m基于DM-OFDM-IM技术的索引OFDM调制解调系统的性能matlab仿真分析

简介: m基于DM-OFDM-IM技术的索引OFDM调制解调系统的性能matlab仿真分析

1.算法仿真效果
matlab2022a仿真结果如下:

89043620d8520d4f217216b7d4174d3d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
20ef194791f32678c774512b3782f6f2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
91f6e5151c25a6d994db2d2ea5885f45_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
随着无线通信技术的不断发展,人们对下一代移动通信系统提出了越来越高的要求。在这样的时代背景下,具有低峰均比,强频偏对抗能力和高能量效率的索引调制OFDM系统(Orthogonal Frequency Division Multiplexing with Index Modulation,OFDM-IM)逐渐引起学者们的关注。正交频分复用(orthogonalfrequencydivisionmultiplexing,ofdm)技术在第四代移动通信系统中扮演着重要的角色。它子载波之间的正交性使各个子信道所经历的衰落相对平坦,再通过引入循环前缀来降低符号间干扰,具有频谱利用率高、抗多径效应好等特点,并且快速傅里叶变换为其提供了一种简单、低成本的实现方式。

2.1OFDM-IM索引调制系统
基于索引调制的OFDM(OFDM-IM,OFDM with Index Modulation)技术被提出,在频率选择性衰落信道上提升了系统的分集增益,特别是在较低频谱效率场景下能够有效降低系统的误比特率。在OFDM-IM方法中,特殊的索引信息传输方式以及索引结构的设计对分集增益的提高,引发了广泛的关注。如何通过索引结构的设计,取得比OFDM更低的误比特率以及更高的频谱效率成为了索引调制OFDM研究方向上的热点。

   但是,在高速场景下,子信道间的正交性会受到多普勒频移的破坏而引起载波间干扰,并且ofdm多个子信道信号叠加也会导致较高的峰均比,这些缺点时ofdm不适用于高速场景。而基于索引调制的正交频分复用(ofdm-im)技术将空间调制技术与传统的正交频分复用(ofdm)技术相结合,其思想是不仅激活子载波可以传输调制信号,而且可以传输其静默子载波的位置信息,从而弥补静默子载波不发送数据造成的损失。静默子载波的存在使得多普勒频移所带来的子载波间的干扰降低,使得系统对频偏不敏感。同时,大量静默子载波的存在又降低了整个输出符号的峰均比,这些优点使得索引调制技术成为5g研究热点之一。

   OFDM-IM是一种多载波索引调制技术,其在信号的频域加入了子载波块的功能,将多个子载波组合成一个子载波块,一个子载波块作为一个调制单元。每次发送过程中,只选择子载波块中的一个或者部分子载波进行激活并发送信息,其功能类似于基于频域的空间索引调制随机数。OFDM-IM技术的基本结构如下图所示:

06e75356bdee8f82ae508f7699949040_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    OFDM-IM技术和传统的OFDM技术不同之处在于其在调制阶段,加入了索引调制步骤,根据索引调制比特信息,通过映射关系表,选择子载波进行激活并发送相应的比特数据,而未被选择的子载波则处于静默状态。这些索引调制比特数据同时补偿未被激活的静默子载波产生的频谱利用率低的问题。而在OFDM-IM接收部分,则通过子载波块的检测模块来恢复出索引信息和数据符号信息。

   OFDM-IM索引调制系统相对于传统的OFDM系统而言,其最要区别在于被激活的子载波数量被降低,因此其对子载波数量相对于OFDM系统而言较为稀疏,那么其对频偏更加的不敏感。另外一方面,通过OFDM-IM索引调制技术,则可以在传统OFDM调制系统的基础上加入一个调制域,补偿未被激活的子载波带来的频谱利用率方面的损失,从而起到提高频谱利用率,提升系统误码率性能的需求。

2.2DM-OFDM-IM索引调制系统
DM-OFDM-IM(Discrete Multi-Tone Orthogonal Frequency Division Multiplexing with Index Modulation)索引调制技术是一种融合了正交频分复用(OFDM)和指数调制(Index Modulation,IM)的创新通信技术。它结合了OFDM的高频谱效率和IM的信息隐藏能力,为无线通信系统带来了新的可能性。在DM-OFDM-IM技术中,我们考虑一个具有N个子载波的OFDM系统。传统的OFDM系统中,每个子载波上都携带着信息,例如基础信息源的调制符号。然而,在DM-OFDM-IM中,除了基础信息源外,还引入了辅助信息源。这两种信息源通过索引调制方式进行传输。具体而言,DM-OFDM-IM系统中的每个子载波的状态(即携带基础信息源或辅助信息源)被称为“索引”,而每个子载波上的调制方式被称为“调制指数”。这样,DM-OFDM-IM技术利用了子载波的索引和调制指数来传输信息。

   相比之下,传统的OFDM-IM索引调制技术主要关注于调制指数的变化来传输信息。在OFDM-IM中,每个子载波的调制指数可以根据信息源的状态来选择。

DM-OFDM-IM索引调制技术的视线过程如下:

信息源分割与映射:将基础信息源和辅助信息源分别分割成块,并将基础信息源映射到OFDM子载波上。

辅助信息源编码:通过索引编码将辅助信息源映射到子载波的索引上。

OFDM调制:对每个子载波进行OFDM调制,将基础信息源和索引编码的辅助信息源进行叠加。

发送端:将调制后的信号发送到接收端。

接收端:接收到信号后,进行OFDM解调,分离基础信息源和索引。

索引解码:解析子载波的索引,还原辅助信息源。

信息恢复:将基础信息源和辅助信息源进行合并,从而恢复原始信息。

3.MATLAB核心程序

相关文章
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
1月前
|
存储 自然语言处理 机器人
实战揭秘:当RAG遇上企业客服系统——从案例出发剖析Retrieval-Augmented Generation技术的真实表现与应用局限,带你深入了解背后的技术细节与解决方案
【10月更文挑战第3天】随着自然语言处理技术的进步,结合检索与生成能力的RAG技术被广泛应用于多个领域,通过访问外部知识源提升生成内容的准确性和上下文一致性。本文通过具体案例探讨RAG技术的优势与局限,并提供实用建议。例如,一家初创公司利用LangChain框架搭建基于RAG的聊天机器人,以自动化FAQ系统减轻客服团队工作负担。尽管该系统在处理简单问题时表现出色,但在面对复杂或多步骤问题时存在局限。此外,RAG系统的性能高度依赖于训练数据的质量和范围。因此,企业在采用RAG技术时需综合评估需求和技术局限性,合理规划技术栈,并辅以必要的人工干预和监督机制。
94 3
|
3月前
|
数据采集 监控 测试技术
大型IM稳定性监测实践:手Q客户端性能防劣化系统的建设之路
本文以iOS端为例,详细分享了手 Q 客户端性能防劣化系统从0到1的构建之路,相信对业界和IM开发者们都有较高的借鉴意义。
129 2
|
1月前
|
人工智能 自然语言处理 搜索推荐
AI技术在智能客服系统中的应用与挑战
【9月更文挑战第32天】本文将探讨AI技术在智能客服系统中的应用及其面临的挑战。我们将分析AI技术如何改变传统客服模式,提高服务质量和效率,并讨论在实际应用中可能遇到的问题和解决方案。
236 65
|
16天前
|
人工智能 自然语言处理 搜索推荐
选型攻略 | 智能客服系统该怎么选?(好用的智能客服系统推荐)
智能客服系统的选型需要综合考虑渠道功能、系统性能、客服工作管理、客户管理以及成本效益等因素。目前合力亿捷推出的智能知识库,梳理海量知识,根据不同主题对知识进行分类,使其结构更清晰。
46 0
|
16天前
|
人工智能 自然语言处理 安全
AI技术在智能客服系统中的应用与挑战
【10月更文挑战第28天】本文将深入探讨人工智能(AI)技术在智能客服系统中的应用及其面临的挑战。我们将通过实例分析,了解AI如何改善客户服务体验,提高效率和降低成本。同时,我们也将关注AI在实际应用中可能遇到的问题,如语义理解、情感识别和数据安全等,并提出相应的解决方案。
|
1月前
|
存储 安全 开发工具
百度公共IM系统的Andriod端IM SDK组件架构设计与技术实现
本文主要介绍了百度公共IM系统的Andriod端IM SDK的建设背景、IM SDK主要结构和工作流程以及建设过程遇到的问题和解决方案。
53 3
|
2月前
|
数据挖掘 API
如何选择适合的售后工单管理系统
选择合适的售后工单管理系统需评估需求和预算,考察功能、技术支持及服务商可靠性,并全面试用评估。ZohoDesk适合初创和中小企业,具备强大的工单管理、报告分析及可定制性,助力提升服务质量和客户体验。通过合适系统,企业不仅能优化客户服务流程,还能通过数据分析支持决策,推动长远发展。
64 16
|
2月前
|
人工智能 自然语言处理 前端开发
从客服场景谈:大模型如何接入业务系统
本文探讨了大模型在AI客服中的应用。大模型虽具有强大的知识生成能力,但在处理具体业务如订单咨询、物流跟踪等问题时,需结合数据库查询、API调用等手段。文章提出用Function Call连接大模型与业务系统,允许大模型调用函数获取私域知识。通过具体示例展示了如何设计系统提示词、实现多轮对话、定义Function Call函数,并利用RAG技术检索文档内容。最后,展示了该方案在订单查询和产品咨询中的实际效果。

热门文章

最新文章