Python代码覆盖率分析工具----Coverage

简介: Python代码覆盖率分析工具----Coverage

简介


在测试中,为了度量产品质量,代码覆盖率被作为一种测试结果的评判依据,在Python代码中用来分析代码覆盖率的工具当属Coverage。代码覆盖率是由特定的测试套件覆盖被测源代码的程度来度量,Coverage是一种用于统计Python代码覆盖率的工具,通过它可以检测测试代码的有效性,即测试case对被测代码的覆盖率几何。

Coverage支不仅持分支覆盖率统计,还可以生成HTML/XML报告。并且XML报告可以结合Jenkins和Sonar集成工具一起使用。

Coverage官方文档:http://coverage.readthedocs.org/en/latest/

640.png

安装


Coverage作为Python的一个第三方库,使用时需要先安装,使用pip命令进行安装。

安装命令:pip install coverage


C:\Users\TynamYang>pip install coverage
Collecting coverage
Downloading coverage-5.1-cp37-cp37m-win32.whl (204 kB)
|████████████████████████████████| 204 kB 731 kB/s
Installing collected packages: coverage
Successfully installed coverage-5.1


安装完成后可以看到安装的版本:coverage-5.1

安装完成后使用coverage,coverage有两种使用方法,一种是在命令行中使用,一种是调用API使用。方便控制部分需要测试的代码。


命令行中使用


1、基本参数

命令行中使用文档:http://coverage.readthedocs.org/en/latest/cmd.html

命令行中使用时常用参数:

  • run – 运行Python程序并收集执行数据
  • report – 报告覆盖率结果
  • html – 生成HTML文件,内容含覆盖率结果列表
  • json – 生成JSON文件,内容含覆盖率结果
  • xml – 生成XML报告文件,内容含覆盖率结果
  • erase – 清除之前收集的覆盖率数据
  • combine – 合并多个数据文件
  • debug – 获取调试信息

可以使用help命令查看帮助:

coverage help


2、运行代码收集信息

在使用coverage时,基本需要两步运行,第一步运行源代码,收集被测试的源代码覆盖率的信息,第二步生成代码覆盖率的信息报告。

如下测试代码:


import unittest
def add_numb(a, b):
    return a + b
def division_numb(a, b):
    return a / b
class Test(unittest.TestCase):
    def test_add_1(self):
        self.assertEqual(add_numb(1,1), 2)
    def test_add_2(self):
        self.assertEqual(add_numb(2,0), 1)
    def test_division_1(self):
        self.assertEqual(division_numb(2,1), 2)
    def test_division_2(self):
        self.assertEqual(division_numb(2,0), 2)
if __name__ == "__main__":
    unittest.main(verbosity=2)


使用命令运行:

coverage run test.py


C:\Users\TynamYang\Desktop> coverage run test.py
test_add_1 (__main__.Test) ... ok
test_add_2 (__main__.Test) ... FAIL
test_division_1 (__main__.Test) ... ok
test_division_2 (__main__.Test) ... ERROR
======================================================================
ERROR: test_division_2 (__main__.Test)
----------------------------------------------------------------------
Traceback (most recent call last):
File "test.py", line 22, in test_division_2
self.assertEqual(division_numb(2,0), 2)
File "test.py", line 9, in division_numb
return a / b
ZeroDivisionError: division by zero
======================================================================
FAIL: test_add_2 (__main__.Test)
----------------------------------------------------------------------
Traceback (most recent call last):
File "test.py", line 16, in test_add_2
self.assertEqual(add_numb(2,0), 1)
AssertionError: 2 != 1
----------------------------------------------------------------------
Ran 4 tests in 0.003s
FAILED (failures=1, errors=1)


代码执行完成后会生成一个覆盖率统计结果文件:.coverage。该文件名可通过设置COVERAGE_FILE环境变量进行修改。


3、生成报告

查看报告有两种方式,一种是在当前命令行模式下查看,一种是生成HTML报告文件查看。

命令行模式下查看

根据运行代码后生成的.coverage文件,使用report参数可在命令行模式下查看覆盖率统计结果。

使用命令:

coverage report


PS C:\Users\TynamYang\Desktop> coverage report
Name      Stmts   Miss  Cover
-----------------------------
test.py      16      0   100%

由结果可以得知,执行的test.py文件,代码覆盖率是100%

结果展示中的字段含义:

  • tmts:语句总数
  • Miss:未执行到的语句数
  • Cover:覆盖率,计算公式 Cover=(Stmts-Miss)/Stmts

生成HTML报告文件

使用命令生成HTML报告:

coverage html -d covhtml


其中参数-d是指定生成的html所在的文件夹名

命令执行完成后会生成一个covhtml文件。

640.jpg


文件中的index.html文件覆盖率数据统计。

也可以看一些示例:https://nedbatchelder.com/files/sample_coverage_html/

640.jpg


各字段说明:

  • Stmts 总的有效代码行数(不包含空行和注释行)
  • Miss 未执行的代码行数(不包含空行和注释行)
  • Branch 总分支数
  • BrMiss 未执行的分支数
  • Cover 代码覆盖率
  • Missing 未执行的代码部分在源文件中行号

以执行的测试原文件命名的文件,可以高亮显示覆盖和未覆盖的代码。如test_py.html。

也可以看一些示例,http://nedbatchelder.com/code/coverage/sample_html/

640.jpg

使用

调用API使用文档:http://coverage.readthedocs.org/en/latest/api.html

在python代码中通过调用coverage模块执行代码生成代码覆盖率的统计结果。使用方法也非常简单,如下示例:


if __name__ == "__main__":
    # 实例化对象
    cov = coverage.coverage()
    # 开始分析
    cov.start()
    suite = unittest.defaultTestLoader.discover(os.getcwd(), "test.py")
    unittest.TextTestRunner().run(suite)
    # 结束分析
    cov.stop()
    # 结果保存
    cov.save()
    # 命令行模式展示结果
    cov.report()
    # 生成HTML覆盖率报告
    cov.html_report(directory='covhtml')

文章链接地址:

https://www.cnblogs.com/tynam/p/12788442.html


以上,便是今天的内容,希望大家喜欢,欢迎「转发或者点击「在看」支持!

相关文章
|
15天前
|
缓存 自然语言处理 监控
阿里巴巴 item_review 接口深度分析及 Python 实现
阿里巴巴开放平台的 item_review 接口用于获取商品用户评论数据,支持评论内容、评分、买家信息等多维度分析,助力产品优化与市场策略制定。
|
11天前
|
缓存 供应链 监控
1688item_search_factory - 按关键字搜索工厂数据接口深度分析及 Python 实现
item_search_factory接口专为B2B电商供应链优化设计,支持通过关键词精准检索工厂信息,涵盖资质、产能、地理位置等核心数据,助力企业高效开发货源、分析产业集群与评估供应商。
|
9天前
|
缓存 监控 算法
item_get - Lazada 商品详情详情接口深度分析及 Python 实现
Lazada商品详情接口item_get可获取商品全维度数据,包括价格、库存、SKU、促销及卖家信息,支持东南亚六国站点,适用于竞品监控、定价策略与市场分析,助力跨境卖家精准决策。
|
13天前
|
JSON 监控 数据格式
1688 item_search_app 关键字搜索商品接口深度分析及 Python 实现
1688开放平台item_search_app接口专为移动端优化,支持关键词搜索、多维度筛选与排序,可获取商品详情及供应商信息,适用于货源采集、价格监控与竞品分析,助力采购决策。
|
14天前
|
缓存 供应链 监控
VVIC seller_search 排行榜搜索接口深度分析及 Python 实现
VVIC搜款网seller_search接口提供服装批发市场的商品及商家排行榜数据,涵盖热销榜、销量排名、类目趋势等,支持多维度筛选与数据分析,助力选品决策、竞品分析与市场预测,为服装供应链提供有力数据支撑。
|
15天前
|
缓存 监控 供应链
唯品会自定义 API 自定义操作深度分析及 Python 实现
唯品会开放平台提供丰富API,支持商品查询、订单管理、促销活动等电商全流程操作。基于OAuth 2.0认证机制,具备安全稳定的特点。通过组合调用基础接口,可实现数据聚合、流程自动化、监控预警及跨平台集成,广泛应用于供应链管理、数据分析和智能采购等领域。结合Python实现方案,可高效完成商品搜索、订单分析、库存监控等功能,提升电商运营效率。
|
5天前
|
缓存 监控 算法
唯品会item_search - 按关键字搜索 VIP 商品接口深度分析及 Python 实现
唯品会item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商数据分析、竞品监控与市场调研。结合Python可实现搜索、分析、可视化及数据导出,助力精准决策。
|
5天前
|
缓存 监控 算法
苏宁item_search - 按关键字搜索商品接口深度分析及 Python 实现
苏宁item_search接口支持通过关键词、分类、价格等条件检索商品,广泛应用于电商分析、竞品监控等场景。具备多维度筛选、分页获取、数据丰富等特性,结合Python可实现搜索、分析与可视化,助力市场研究与决策。
|
5天前
|
缓存 监控 算法
苏宁item_get - 获得商品详情接口深度# 深度分析及 Python 实现
苏宁易购item_get接口可实时获取商品价格、库存、促销等详情,支持电商数据分析与竞品监控。需认证接入,遵守调用限制,适用于价格监控、销售分析等场景,助力精准营销决策。(238字)

推荐镜像

更多