用Python的Plotly画出炫酷的数据可视化(含各类图介绍)

简介: 用Python的Plotly画出炫酷的数据可视化(含各类图介绍)

在谈及数据可视化的时候,我们通常都会使用到matplotlylib,pyecharts这些可视化的手段。但是,今天我主要来介绍Plotly这款可视化的库。大家参考开源项目地址:

https://github.com/plotly/plotly.js640.png

这个库是使用js写的前端,所以画出来的图非常的漂亮,不像matplotlylib画出来的那么生硬。plotly提供了Python的支持库,使用pip直接安装就可以:

pip install plotly


在python里面使用plotly画图非常的简单,我们先来看一个简单的柱状图例子:

import plotly.graph_objects as go
animals=['giraffes', 'orangutans', 'monkeys']
fig = go.Figure(data=[
    go.Bar(name='SF Zoo', x=animals, y=[20, 14, 23]),
    go.Bar(name='LA Zoo', x=animals, y=[12, 18, 29])
])
# Change the bar mode
fig.update_layout(barmode='group')
fig.show()

使用起来非常的方便,和matplotlylib画图步骤很像,下面我们再来看看一组关于个性化显示的例子:利用plotly express自带的数据集,画一个简单的柱状图:

import plotly.express as px
data_canada = px.data.gapminder().query("country == 'Canada'")
fig = px.bar(data_canada, x='year', y='pop')
fig.show()

640.png


这样的图看上去还是比较素,我们可以使用参数来自定义条形图的样式:

import plotly.express as px
data = px.data.gapminder()
data_canada = data[data.country == 'Canada']
fig = px.bar(data_canada, x='year', y='pop',
             hover_data=['lifeExp', 'gdpPercap'], color='lifeExp',
             labels={'pop':'population of Canada'}, height=400)
fig.show()

640.png

调整样式后会明显发现数据展示会友好很多,能够清楚的看到数据的增长程度。
除了柱状图之外还有其他的散点图,折线图,饼状图,条形图,箱型图等等(也包含一些热图,登高图,地图分布等等)。

640.png

下面,我们使用Python画一些Plolty基本图的Demo:

(大家如果有需要用Plotly的建议收藏哦!)
散点图散点图核心的价值在于发现变量之间的关系,千万不要简单地将这个关系理解为线性回归关系。变量间的关系有很多,如线性关系、指数关系、对数关系等等,当然,没有关系也是一种重要的关系。散点图更偏向于研究型图表,能让我们发现变量之间隐藏的关系为我们决策作出重要的引导作用。

import plotly.express as px
fig = px.scatter(x=[0, 1, 2, 3, 4], y=[0, 1, 4, 9, 16])
fig.show()

640.png

import plotly.express as px
df = px.data.iris()  # px自带数据集
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species",
                 size='petal_length', hover_data=['petal_width'])
fig.show()


640.png


折线图

折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。比如我们经常看到的监控数据图,一般都是折线图。

import plotly.graph_objects as go
animals = ['giraffes', 'orangutans', 'monkeys']
fig = go.Figure(data=[
    go.Scatter(name='SF Zoo', x=animals, y=[20, 14, 23]),
    go.Scatter(name='LA Zoo', x=animals, y=[12, 18, 29])
])
fig.show()

640.png


import plotly.graph_objects as go
import numpy as np
np.random.seed(1)
N = 100
random_x = np.linspace(0, 1, N)
random_y0 = np.random.randn(N) + 5
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N) - 5
# Create traces
fig = go.Figure()
fig.add_trace(go.Scatter(x=random_x, y=random_y0,
                    mode='lines',
                    name='lines'))
fig.add_trace(go.Scatter(x=random_x, y=random_y1,
                    mode='lines+markers',
                    name='lines+markers'))
fig.add_trace(go.Scatter(x=random_x, y=random_y2,
                    mode='markers', name='markers'))
fig.show()

640.png



饼图饼图主要用于总体中各组成部分所占比重的研究,可以很直观地分析项目的组成结构与比重,一目了然地进行描述重量分成。比如我们统计各种开销占总支出多少的时候,这个时候使用饼图可以很明显看出开销的大头。

import plotly.express as px
# This dataframe has 244 lines, but 4 distinct values for `day`
df = px.data.tips()
fig = px.pie(df, values='tip', names='day')
fig.show()

import plotly.express as px# plotly的自带数据集,类型:DataFrame
df = px.data.gapminder().query("year == 2007").query("continent == 'Europe'")
df.loc[df['pop'] < 2.e6, 'country'] = 'Other countries' # Represent only large countries
fig = px.pie(df, values='pop', names='country', title='Population of European continent')
fig.show()

640.png




TreeMap(矩形树图)

矩形树图适合展现具有层级关系的数据,能够直观体现同级之间的比较。一个Tree状结构转化为平面空间矩形的状态,就像一张地图,指引我们发现探索数据背后的故事。

矩形树图采用矩形表示层次结构里的节点,父子节点之间的层次关系用矩形之间的相互嵌套隐喻来表达。从根节点开始,屏幕空间根据相应的子节点数目被分为多个矩形,矩形的面积大小通常对应节点的属性。每个矩形又按照相应节点的子节点递归的进行分割,知道叶子节点为止。

640.png
import plotly.express as px
fig = px.treemap(
    names = ["Eve","Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
    parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"]
)
fig.show()




水平柱状图和纵向柱状图一样,都是用来列举和比较多个个体之间的差值,通过柱状图的长短可以很明显看出数据之间的差别。

import plotly.graph_objects as go
# 修改水平参数即可
fig = go.Figure(go.Bar(
            x=[20, 14, 23],
            y=['giraffes', 'orangutans', 'monkeys'],
            orientation='h'))
fig.show()

640.png



箱型图

箱形图(Box-plot)又称为盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比较。

import plotly.express as px
df = px.data.tips()
fig = px.box(df, x="time", y="total_bill")
fig.show()


640.png



等高线有二维、三维等高线图。在数据分析中,高度表示为该点的数量或出现次数,该指标相同则在一条环线(或高度)处。

import plotly.graph_objects as go
fig = go.Figure(data =
    go.Contour(
        z=[[10, 10.625, 12.5, 15.625, 20],
           [5.625, 6.25, 8.125, 11.25, 15.625],
           [2.5, 3.125, 5., 8.125, 12.5],
           [0.625, 1.25, 3.125, 6.25, 10.625],
           [0, 0.625, 2.5, 5.625, 10]]
    ))
fig.show()


640.png


热图是指用热谱图展示用户在网站上的行为。浏览量大、点击量大的地方呈红色,浏览量小、点击量少的地方呈无色、蓝色。常见热图共有点击热图、注意力热图、分析热图、对比热图、分享热图、浮层热图和历史热图等七种。

import plotly.express as px
data=[[1, 25, 30, 50, 1], [20, 1, 60, 80, 30], [30, 60, 1, 5, 20]]
fig = px.imshow(data,
                labels=dict(x="Day of Week", y="Time of Day", color="Productivity"),
                x=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'],
                y=['Morning', 'Afternoon', 'Evening']
               )
fig.update_xaxes(side="top")
fig.show()

640.png



三元图三元图,又称三元相图(Ternary plot)有三个坐标轴,它的三个坐标轴“首尾相接”成夹角为60度的等边三角形。“元”即成分,或部分,三元图主要用来展示不同样本的三种成分的比例,在物理化学中比较常见。

import plotly.express as px
df = px.data.election()
fig = px.scatter_ternary(df, a="Joly", b="Coderre", c="Bergeron")
fig.show()

640.png



雷达图雷达图以二维的形式展现了多维数据,使观察者可以一目了然地得知对象在各种指标上的强弱,最典型的就是游戏中衡量一个角色多维度的能力值。

import plotly.express as px
import pandas as pd
df = pd.DataFrame(dict(
    r=[1, 5, 2, 2, 3],
    theta=['processing cost','mechanical properties','chemical stability',
           'thermal stability', 'device integration']))
fig = px.line_polar(df, r='r', theta='theta', line_close=True)
fig.show()


640.png


极坐标图极坐标图主要作用就是可在一张图上绘出整个频率域的频率响应特性。

import plotly.express as px
df = px.data.wind()
fig = px.scatter_polar(df, r="frequency", theta="direction")
fig.show()


640.png


瀑布图瀑布图,因为形似瀑布流水而称之为瀑布图( Waterfall Plot)。此种图表采用绝对值与相对值结合的方式,适用于表达数个特定数值之间的数量变化关系。

import plotly.graph_objects as go
fig = go.Figure(go.Waterfall(
    name = "20", orientation = "v",
    measure = ["relative", "relative", "total", "relative", "relative", "total"],
    x = ["Sales", "Consulting", "Net revenue", "Purchases", "Other expenses", "Profit before tax"],
    textposition = "outside",
    text = ["+60", "+80", "", "-40", "-20", "Total"],
    y = [60, 80, 0, -40, -20, 0],
    connector = {"line":{"color":"rgb(63, 63, 63)"}},
))
fig.update_layout(
        title = "Profit and loss statement 2020",
        showlegend = True
)
fig.show()


640.png

漏斗图

一般表述转化率(如营销客户转化),由上而下代表不同层级,转化率逐级降低并形成漏斗形状。

import plotly.express as px
data = dict(
    number=[39, 27.4, 20.6, 11, 2],
    stage=["Website visit", "Downloads", "Potential customers", "Requested price", "invoice sent"])
fig = px.funnel(data, x='number', y='stage')
fig.show()

640.png


气泡分布图(含配置底图)

import plotly.express as px
df = px.data.gapminder().query("year==2007")
fig = px.scatter_geo(df, locations="iso_alpha", color="continent",
                     hover_name="country", size="pop",
                     projection="natural earth")
fig.show()

640.png

相关文章
|
20天前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
2月前
|
机器学习/深度学习 数据可视化 搜索推荐
基于python的汽车数据可视化、推荐及预测系统
本研究围绕汽车数据可视化、推荐及预测系统展开,结合大数据与人工智能技术,旨在提升用户体验与市场竞争力。内容涵盖研究背景、意义、相关技术如 Python、ECharts、协同过滤及随机森林回归等,探讨如何挖掘汽车数据价值,实现个性化推荐与智能预测,为汽车行业智能化发展提供支持。
|
2月前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
2月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
3月前
|
搜索推荐 算法 数据可视化
基于python大数据的招聘数据可视化及推荐系统
本研究聚焦于基于协同过滤的就业推荐系统设计与实现。随着就业压力增大和信息技术发展,传统求职方式面临挑战。通过分析用户行为与职位特征,协同过滤技术可实现个性化职位推荐,提升求职与招聘效率。研究涵盖系统架构、数据采集、算法实现及可视化展示,旨在优化就业匹配,促进人才与岗位精准对接,助力就业市场智能化发展。
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
242 102
|
2月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
276 104
|
2月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
235 103

推荐镜像

更多