MySQL数据高阶处理技巧:掌握先排序后分组的智慧

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 在MySQL数据库的数据探索旅程中,排序和分组是不可或缺的工具。然而,当你面对大量数据、重复值等情况时,常规的处理方法可能显得不够灵活。本文将为你揭示一个精妙的技巧:如何在MySQL中先排序,后分组,从而获取每个类型的最新数据,助你轻松驾驭复杂的数据处理任务。

在MySQL数据库的数据探索旅程中,排序和分组是不可或缺的工具。然而,当你面对大量数据、重复值等情况时,常规的处理方法可能显得不够灵活。本文将为你揭示一个精妙的技巧:如何在MySQL中先排序,后分组,从而获取每个类型的最新数据,助你轻松驾驭复杂的数据处理任务。

问题背景:先排序,后分组

拥有一张包含活动信息的数据表,其中涵盖活动名称、开始时间、类型等字段。你的任务是,根据开始时间先排序,然后在每个类型中选择最新的那条记录,以获取所有信息。

方法一:子查询(5.7版本)

在子查询中首先对数据进行排序,然后在外部查询中使用分组操作。这样可以保留排序后的顺序,并在分组后选择特定行。

select * from (select * from jsontest order by start_time limit 100000 ) T1 group by type order by type

这个查询首先将整个表按照开始时间降序排序,然后在外部查询中按类型进行分组,由于已经排序,每个类型中的第一行即为最新的记录。

注意:此处子查询需要添加limit,limit的值可以根据实际情况调整

在5.7版本中会忽略掉子查询中的order by语句,也就是排序被优化掉了,可以通过在子查询中添加limit来显式的限制生成的子查询结果集

方法二:使用窗口函数(8.0版本)

通过使用窗口函数(如 ROW_NUMBER())在内部查询中为每一行分配一个行号,然后在外部查询中筛选行号为1的记录。这样也可以实现先排序后分组的效果。

SELECT T1.*
FROM (
    SELECT *, ROW_NUMBER() OVER(PARTITION BY type ORDER BY start_time desc) AS rn
    FROM jsontest
) T1
WHERE T1.rn = 1;

这个查询在内部查询中使用窗口函数,为每个类型的记录按开始时间降序分配行号,然后在外部查询中选择行号为1的记录,即每个类型的最新记录。

总结

通过这个先排序,后分组的MySQL魔法,你可以轻松地应对需要复杂数据处理的情况。不再为排序和分组的顺序问题而烦恼,让你的数据分析更加高效准确。在实际的数据处理中,根据具体的场景选择适合的方法,将会使你在MySQL的世界里游刃有余。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
4月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
263 0
|
3月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
319 10
|
3月前
|
存储 关系型数据库 MySQL
MySQL中实施排序(sorting)及分组(grouping)操作的技巧。
使用这些技巧时,需要根据实际的数据量、表的设计和服务器性能等因素来确定最合适的做法。通过反复测试和优化,可以得到最佳的查询性能。
281 0
|
4月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
137 0
|
7月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
346 28
|
6月前
|
存储 SQL 缓存
mysql数据引擎有哪些
MySQL 提供了多种存储引擎,每种引擎都有其独特的特点和适用场景。以下是一些常见的 MySQL 存储引擎及其特点:
190 0
|
9月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
2296 45
|
8月前
|
存储 SQL 关系型数据库
【YashanDB知识库】MySQL迁移至崖山char类型数据自动补空格问题
**简介**:在MySQL迁移到崖山环境时,若字段类型为char(2),而应用存储的数据仅为'0'或'1',查询时崖山会自动补空格。原因是mysql的sql_mode可能启用了PAD_CHAR_TO_FULL_LENGTH模式,导致保留CHAR类型尾随空格。解决方法是与应用确认数据需求,可将崖山环境中的char类型改为varchar类型以规避补空格问题,适用于所有版本。
|
8月前
|
SQL 关系型数据库 MySQL
【YashanDB知识库】字符集latin1的MySQL中文数据如何迁移到YashanDB
本文探讨了在使用YMP 23.2.1.3迁移MySQL Server字符集为latin1的中文数据至YashanDB时出现乱码的问题。问题根源在于MySQL latin1字符集存放的是实际utf8编码的数据,而YMP尚未支持此类场景。文章提供了两种解决方法:一是通过DBeaver直接迁移表数据;二是将MySQL表数据转换为Insert语句后手动插入YashanDB。同时指出,这两种方法适合单张表迁移,多表迁移可能存在兼容性问题,建议对问题表单独处理。
【YashanDB知识库】字符集latin1的MySQL中文数据如何迁移到YashanDB

推荐镜像

更多