一个不可思议的MySQL慢查分析与解决

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 一个不可思议的MySQL慢查分析与解决

正文


最近,开发人员需要定期的删除表里一定时间以前的数据,SQL如下:


mysql > delete from testtable WHERE biz_date <= '2017-08-21 00:00:00'  AND status = 2  limit 500\G

前段时间在优化的时候,我们已经在相应的查询条件上加上了索引,如下:


KEY `idx_bizdate_st` (`biz_date`,`status`)

但是实际执行的SQL依然非常慢,为什么呢,我们来一步步分析验证下。


# 分析


表上的字段既然都有索引,那么按照之前的文章分析,是两个字段都可以走上索引的。


既然能够利用索引,表的总大小也就是200M左右,那么为什么形成了慢查呢?


我们查看执行计划,去掉limit 后,发现他选择了走全表扫描。

mysql > desc  select * from testtable   WHERE biz_date <= '2017-08-21 00:00:00';
+----+-------------+-----------+------+----------------+------+---------+------+--------+-------------+
| id | select_type | table     | type | possible_keys  | key  | key_len | ref  | rows   | Extra       |
+----+-------------+-----------+------+----------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | testtable | ALL  | idx_bizdate_st | NULL | NULL    | NULL | 980626 | Using where |
+----+-------------+-----------+------+----------------+------+---------+------+--------+-------------+
1 row in set (0.00 sec)
-- 只查询biz_date
-- 关键点:rows:980626;type:ALL
mysql > desc  select * from testtable   WHERE biz_date <= '2017-08-21 00:00:00' and status = 2;
+----+-------------+-----------+------+----------------+------+---------+------+--------+-------------+
| id | select_type | table     | type | possible_keys  | key  | key_len | ref  | rows   | Extra       |
+----+-------------+-----------+------+----------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | testtable | ALL  | idx_bizdate_st | NULL | NULL    | NULL | 980632 | Using where |
+----+-------------+-----------+------+----------------+------+---------+------+--------+-------------+
1 row in set (0.00 sec)
-- 查询biz_date + status 
-- 关键点:rows:980632;type:ALL
mysql > desc  select * from testtable   WHERE biz_date <= '2017-08-21 00:00:00' and status = 2 limit 100;
+----+-------------+-----------+-------+----------------+----------------+---------+------+--------+-----------------------+
| id | select_type | table     | type  | possible_keys  | key            | key_len | ref  | rows   | Extra                 |
+----+-------------+-----------+-------+----------------+----------------+---------+------+--------+-----------------------+
|  1 | SIMPLE      | testtable | range | idx_bizdate_st | idx_bizdate_st | 6       | NULL | 490319 | Using index condition |
+----+-------------+-----------+-------+----------------+----------------+---------+------+--------+-----------------------+
1 row in set (0.00 sec)
-- 查询biz_date + status+ limit 
-- 关键点:rows:490319;
mysql > select count(*)  from testtable   WHERE biz_date <= '2017-08-21 00:00:00' and status = 2;
+----------+
| count(*) |
+----------+
|        0 |
+----------+
1 row in set (0.34 sec)
mysql > select count(*)  from testtable   WHERE biz_date <= '2017-08-21 00:00:00';
+----------+
| count(*) |
+----------+
|   970183 |
+----------+
1 row in set (0.33 sec)
mysql > select count(*)  from testtable;
+----------+
| count(*) |
+----------+
|   991421 |
+----------+
1 row in set (0.19 sec)
mysql > select distinct biz_status from testtable;
+------------+
| biz_status |
+------------+
|          1 |
|          2 |
|          4 |
+------------+

通过以上查询,我们可以发现如下几点问题:


  • 通过 biz_date 预估出来的行数 和 biz_date + status=2 预估出来的行数几乎一样,为98w。
  • 实际查询表 biz_date + status=2 一条记录都没有。
  • 整表数据量达到了99万,MySQL发现通过索引扫描需要98w行(预估)


因此,MySQL通过统计信息预估的时候,发现需要扫描的索引行数几乎占到了整个表,放弃了使用索引,选择了走全表扫描。


那是不是他的统计信息有问题呢?我们重新收集了下表统计信息,发现执行计划的预估行数还是一样,猜测只能根据组合索引的第一个字段进行预估(待确定)。


那我们试下直接强制让他走索引呢?

mysql > select * from testtable   WHERE biz_date <= '2017-08-21 00:00:00' and status = 2;
Empty set (0.79 sec)
mysql > select * from testtable force index(idx_bizdate_st)  WHERE biz_date <= '2017-08-21 00:00:00' and status = 2;
Empty set (0.16 sec)

我们发现,强制指定索引后,查询耗时和没有强制索引比较,的确执行速度快了很多,因为没有强制索引是全表扫描嘛!但是!依然非常慢!


那么还有什么办法去优化这个本来应该很快的查询呢?


大家应该都听说过要选择性好的字段放在组合索引的最前面?


选择性好的索引在前面并不是对所有的场景都通用的,这个场景可以将status放前面,sql速度会更快。


那,能不能让他不要扫描索引的那么多范围呢?之前的索引模型中也说过,MySQL是通过索引去确定一个扫描范围,如果能够定位到尽可能小的范围,那是不是速度上会快很多呢?


并且业务逻辑上是定期删除一定日期之前的数据。所以逻辑上来说,每次删除都是只删除一天的数据,直接让SQL扫描一天的范围。那么我们就可以改写SQL啦!

mysql > select * from testtable WHERE biz_date >= '2017-08-20 00:00:00' and biz_date <= '2017-08-21 00:00:00' and status = 2;
Empty set (0.00 sec)
mysql > desc select * from testtable WHERE biz_date >= '2017-08-20 00:00:00' and biz_date <= '2017-08-21 00:00:00' and status = 2;
+----+-------------+------------------+-------+----------------+----------------+---------+------+------+-----------------------+
| id | select_type | table            | type  | possible_keys  | key            | key_len | ref  | rows | Extra                 |
+----+-------------+------------------+-------+----------------+----------------+---------+------+------+-----------------------+
|  1 | SIMPLE      | testtable        | range | idx_bizdate_st | idx_bizdate_st | 6       | NULL |  789 | Using index condition |
+----+-------------+------------------+-------+----------------+----------------+---------+------+------+-----------------------+
1 row in set (0.00 sec)
-- rows降低了很多,乖乖的走了索引
mysql > desc select * from testtable WHERE biz_date >= '2017-08-20 00:00:00' and biz_date <= '2017-08-21 00:00:00' ;
+----+-------------+------------------+-------+----------------+----------------+---------+------+------+-----------------------+
| id | select_type | table            | type  | possible_keys  | key            | key_len | ref  | rows | Extra                 |
+----+-------------+------------------+-------+----------------+----------------+---------+------+------+-----------------------+
|  1 | SIMPLE      | testtable        | range | idx_bizdate_st | idx_bizdate_st | 5       | NULL | 1318 | Using index condition |
+----+-------------+------------------+-------+----------------+----------------+---------+------+------+-----------------------+
1 row in set (0.00 sec)
-- 即使没有status,也是肯定走索引啦


# 小结


这个问题,我原本打算用hint,强制让他走索引,但是实际上强制走索引的执行时间并不能带来满意的效果。结合业务逻辑,来优化SQL,是最好的方式,也是终极法宝,一定要好好利用。不了解业务的DBA,不是一个好DBA...

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
6天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
39 3
|
6天前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
46 6
|
6天前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
47 1
|
28天前
|
存储 关系型数据库 MySQL
深入理解MySQL索引类型及其应用场景分析。
通过以上介绍可以看出各类MySQL指标各自拥有明显利弊与最佳实践情墁,在实际业务处理过程中选择正确型号极其重要以确保系统运作流畅而稳健。
101 12
|
2月前
|
存储 SQL 关系型数据库
MySQL的Redo Log与Binlog机制对照分析
通过合理的配置和细致的管理,这两种日志机制相互配合,能够有效地提升MySQL数据库的可靠性和稳定性。
107 10
|
2月前
|
SQL 关系型数据库 MySQL
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
|
5月前
|
SQL 关系型数据库 MySQL
【MySQL】SQL分析的几种方法
以上就是SQL分析的几种方法。需要注意的是,这些方法并不是孤立的,而是相互关联的。在实际的SQL分析中,我们通常需要结合使用这些方法,才能找出最佳的优化策略。同时,SQL分析也需要对数据库管理系统,数据,业务需求有深入的理解,这需要时间和经验的积累。
166 12
|
4月前
|
缓存 JSON 关系型数据库
MySQL 查询优化分析 - 常用分析方法
本文介绍了MySQL查询优化分析的常用方法EXPLAIN、Optimizer Trace、Profiling和常用监控指标。
|
6月前
|
关系型数据库 MySQL OLAP
无缝集成 MySQL,解锁秒级 OLAP 分析性能极限,完成任务可领取三合一数据线!
通过 AnalyticDB MySQL 版、DMS、DTS 和 RDS MySQL 版协同工作,解决大规模业务数据统计难题,参与活动完成任务即可领取三合一数据线(限量200个),还有机会抽取蓝牙音箱大奖!
|
8月前
|
关系型数据库 MySQL 数据库
mysql慢查询每日汇报与分析
通过启用慢查询日志、提取和分析慢查询日志,可以有效识别和优化数据库中的性能瓶颈。结合适当的自动化工具和优化措施,可以显著提高MySQL数据库的性能和稳定性。希望本文的详解和示例能够为数据库管理人员提供有价值的参考,帮助实现高效的数据库管理。
210 11

推荐镜像

更多