Python | Python学习之初识Scrapy

简介: Python | Python学习之初识Scrapy

初识Scrapy

什么是Scrapy?

Scrapy使用 Python 实现的一个开源爬虫框架,Scrapy基于 twisted这个高性能的事件驱动网络引擎框架,Scrapy爬虫拥有很高的性能。

  1. Scrapy内置数据提取器(Selector),支持XPath和 Scrapy自己的 CSS Selector语法
  2. 并且支持正则表达式,方便从网页提取信息。
  3. 交互式的命令行工具,方便测试 Selector 和 debugging爬虫
  4. 支持将数据导出为 JSON,CSV,XML格式。
  5. 可推展性强,运行自己编写特定功能的插件
  6. 内置了很多拓展和中间件用于处理:
  • cookies和 session
  • HTTP的压缩,认证,缓存
  • robots.txt
  • 爬虫深度限制

Scrapy内部数据流程图

Scrapy内部数据流程图

其中:


  • Scrapy Engine(引擎): 负责Spider、ItemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等。
  • Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎。
  • Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,
  • Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器),
  • Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方.
  • Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。
  • Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎和Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)

制作 Scrapy 爬虫 的步骤?

新建项目(scrapy startproject xxx):新建一个新的爬虫项目
明确目标(编写items.py):明确你想要抓取的目标
制作爬虫(spiders/xxspider.py):制作爬虫开始爬取网页
存储内容(pipelines.py):设计管道存储爬取内容

如何安装Scrapy?

在windows系统下安装Scrapy

在windows 64bit系统下需要先安装Scrapy需要安装的依赖库:

pip install wheel
lxml-4.2.1-cp36-cp36m-win_amd64.whl
pyOpenSSL-17.5.0-py2.py3-none-any.whl
pywin32-221.win-amd64-py3.6.exe
Twisted-17.9.0-cp36-cp36m-win_amd64.whl
pip install scrapy

在linux下安装Scrapy

系统版本为ubuntu 16.04

sudo apt-get install build-essential python3-dev libssl-dev libffi-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev
pip install scrapy

Scrapy文件结构

安装好Scrapy后,我们在windows命令行模式下输入以下命令创建Scrapy项目:

scrapy startproject 项目名称

可以看到创建了以下文件:

Scrapy文件结构

其中:

scrapy.cfg :项目的配置文件
xxSpider/ :项目的Python模块,将会从这里引用代码
xxSpider/items.py :项目的目标文件
xxSpider/pipelines.py :项目的管道文件
xxSpider/settings.py :项目的设置文件
xxSpider/spiders/ :存储爬虫代码目录

Scrapy单文件demo

创建完Scrapy项目,还是要上手实验一下才能更好的理解,所以我根据之前我在楼+课程中的学习笔记写了一个Scrapy单文件Demo,使用这个单文件Demo能快速爬取实验楼全部课程信息。

首先看下单文件的内容结构:

# -*- coding:utf-8 -*-
import scrapy
class ShiyanlouCoursesSpider(scrapy.Spider):
    """ 所有 scrapy 爬虫需要写一个 Spider 类,这个类要继承 scrapy.Spider 类。在这个类中定义要请求的网站和链接、如何从返回的网页提取数据等等。
    """
    # 爬虫标识符号,在 scrapy 项目中可能会有多个爬虫,name 用于标识每个爬虫,不能相同
    name = 'shiyanlou-courses'
    def start_requests(self):
        """ 需要返回一个可迭代的对象,迭代的元素是scrapy.Request对象,可迭代对象可以是一个列表或者迭代器,这样 scrapy 就知道有哪些网页需要爬取了。scrapy.Request接受一个 url 参数和一个 callback 参数,url 指明要爬取的网页,callback 是一个回调函数用于处理返回的网页,通常是一个提取数据的 parse 函数。
        """
    def parse(self, response):
        """ 这个方法作为 `scrapy.Request` 的 callback,在里面编写提取数据的代码。scrapy 中的下载器会下载 `start_reqeusts` 中定义的每个 `Request` 并且结果封装为一个 response 对象传入这个方法。
        """
        pass

因为实验楼的网页结构还是很简单的,所以解析部分就不做赘述,直接上单文件完整代码:

# -*- coding:utf-8 -*-
import scrapy
class ShiyanlouCoursesSpider(scrapy.Spider):
    def start_requests(self):
    # 课程列表页面 url 模版
    url_tmpl = 'https://www.shiyanlou.com/courses/?category=all&course_type=all&fee=all&tag=all&page={}'
    # 所有要爬取的页面
    urls = (url_tmpl.format(i) for i in range(1, 23))
    # 返回一个生成器,生成 Request 对象,生成器是可迭代对象
    for url in urls:
        yield scrapy.Request(url=url, callback=self.parse)
    def parse(self, response):
    # 遍历每个课程的 div.course-body
    for course in response.css('div.course-body'):
        # 使用 css 语法对每个 course 提取数据
        yield {
            # 课程名称
            'name': course.css('div.course-name::text').extract_first(),
            # 课程描述
            'description': course.css('div.course-desc::text').extract_first(),
            # 课程类型,实验楼的课程有免费,会员,训练营三种,免费课程并没有字样显示,也就是说没有 span.pull-right 这个标签,没有这个标签就代表时免费课程,使用默认值 `免费`就可以了。
            'type': course.css('div.course-footer span.pull-right::text').extract_first(default='Free'),
            # 注意 // 前面的 .,没有点表示整个文档所有的 div.course-body,有 . 才表示当前迭代的这个 div.course-body
               'students': course.xpath('.//span[contains(@class, "pull-left")]/text()[2]').re_first('[^\d]*(\d*)[^\d]*')
        }

保存文件,使用scrapy runspider xx.py -o data.json运行代码,这里使用 -o参数将结果输出为json格式。

写在后面

这是咸鱼的第四篇学习笔记,旨在熟悉scrapy单文件结构为之后深入学习scrapy打好基础。

相关文章
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
292 0
|
1月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
162 1
|
1月前
|
算法 Java Docker
(Python基础)新时代语言!一起学习Python吧!(三):IF条件判断和match匹配;Python中的循环:for...in、while循环;循环操作关键字;Python函数使用方法
IF 条件判断 使用if语句,对条件进行判断 true则执行代码块缩进语句 false则不执行代码块缩进语句,如果有else 或 elif 则进入相应的规则中执行
248 1
|
1月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
138 4
|
6月前
|
安全 数据安全/隐私保护 Python
Python学习的自我理解和想法(27)
本文记录了学习Python第27天的内容,主要介绍了使用Python操作PPTX和PDF的技巧。其中包括通过`python-pptx`库创建PPTX文件的详细步骤,如创建幻灯片对象、选择母版布局、编辑标题与副标题、添加文本框和图片,以及保存文件。此外,还讲解了如何利用`PyPDF2`库为PDF文件加密,涵盖安装库、定义函数、读取文件、设置密码及保存加密文件的过程。文章总结了Python在处理文档时的强大功能,并表达了对读者应用这些技能的期待。
|
2月前
|
JavaScript Java 大数据
基于python的网络课程在线学习交流系统
本研究聚焦网络课程在线学习交流系统,从社会、技术、教育三方面探讨其发展背景与意义。系统借助Java、Spring Boot、MySQL、Vue等技术实现,融合云计算、大数据与人工智能,推动教育公平与教学模式创新,具有重要理论价值与实践意义。
|
4月前
|
算法 IDE 测试技术
python学习需要注意的事项
python学习需要注意的事项
266 57
|
4月前
|
JSON 数据安全/隐私保护 数据格式
拼多多批量下单软件,拼多多无限账号下单软件,python框架仅供学习参考
完整的拼多多自动化下单框架,包含登录、搜索商品、获取商品列表、下单等功能。
|
4月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异

推荐镜像

更多
下一篇
oss云网关配置