【Linux系统】进程概念(一)

简介: 【Linux系统】进程概念(一)

在了解进程概念前我们还得了解下冯诺依曼体系结构和操作系统的概念与定位。

1 冯诺依曼体系结构

我们常见的计算机,如笔记本。我们不常见的计算机,如服务器,大部分都遵守冯诺依曼体系:

e57a9fcfc83c45ee87f2768f49712143.png

  • 输入单元:包括网卡,键盘鼠标,扫描仪, 写板,话筒等 ;
  • 中央处理器(CPU):含有运算器和控制器等 ;
  • 输出单元:网卡,显示器,打印机等;

 关于冯诺依曼,必须强调几点:

  • 这里的存储器指的是内存 ;
  • 不考虑缓存情况,这里的CPU能且只能对内存进行读写,不能访问外设(输入或输出设备) ;
  • 外设(输入或输出设备)要输入或者输出数据,也只能写入内存或者从内存中读取;
  • 一句话,所有设备都只能直接和内存打交道;

对冯诺依曼的理解,不能只停留在概念上,要深入到对软件数据流理解上,请解释,从你登录上qq开始和某位朋友聊天开始,数据的流动过程。

在不考虑网络层情况下,小明用qq向小红发送了一条消息,小明的电脑从键盘上读取信息然后加载到内存,再从内存将数据通过一系列操作发送到输出设备上(网卡),然后通过一系列的网络操作将数据发送到小红的输入设备上(网卡),小红的电脑再从输入设备中将数据读到内存,然后通过输出设备(显示器)将信息刷新到小红的电脑上,这里数据刷新是两个方面的,再成功发送后小明的电脑也会显示出已经成功发送后的信息。

2 操作系统(Operator System)

概念

任何计算机系统都包含一个基本的程序集合,称为操作系统(OS)。笼统的理解,操作系统包括:

  • 内核(进程管理,内存管理,文件管理,驱动管理)
  • 其他程序(例如函数库,shell程序等等)

设计OS的目的

  • 与硬件交互,管理所有的软硬件资源
  • 为用户程序(应用程序)提供一个良好的执行环境

定位

在整个计算机软硬件架构中,操作系统的定位是:一款纯正的搞管理的软件。

总结

计算机管理硬件

  1. 描述起来,用struct结构体
  2. 组织起来,用链表或其他高效的数据结构

系统调用和库函数概念

在开发角度,操作系统对外会表现为一个整体,但是会暴露自己的部分接口,供上层开发使用,这部分由操作系统提供的接口,叫做系统调用。

系统调用在使用上,功能比较基础,对用户的要求相对也比较高,所以,有心的开发者可以对部分系统调用进行适度封装,从而形成库,有了库,就很有利于更上层用户或者开发者进行二次开发。

3 进程

有了上面对冯诺依曼体系结构和操作系统的理解,我们自然可以想到进程也是先描述,再组织。

3.1 基本概念

  • 课本概念:程序的一个执行实例,正在执行的程序等
  • 内核观点:担当分配系统资源(CPU时间,内存)的实体。

有些教材书上甚至是给出这样的定义的:进程就是程序加载到内存中。但是我觉得这种描述是狭隘的不够具体的,具体的我们下面会给出解释.

3.2 描述进程-PCB

  • 进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。
  • 课本上称之为PCBprocess control block),Linux操作系统下的PCB: task_struct

task_struct是PCB的一种:

  • Linux中描述进程的结构体叫做task_struct
  • task_structLinux内核的一种数据结构,它会被装载到RAM(内存)里并且包含着进程的信息

我们将所有进程的属性用一个队列来维护,当我们想要加载程序时就将它的PCB链接到该运行队列中,这样就很好的维护了进程。

35dd010ac46c4bc2b30c45b9763e3937.png

那现在我们再来回答什么是进程?

进程=当前程序的代码和数据+内核关于进程的相关数据结构

task_ struct内容分类:

标示符: 描述本进程的唯一标示符,用来区别其他进程。

状态: 任务状态,退出代码,退出信号等。

优先级: 相对于其他进程的优先级。

程序计数器: 程序中即将被执行的下一条指令的地址。

内存指针: 包括程序代码和进程相关数据的指针,还有和其他进程共享的内存块的指针

上下文数据: 进程执行时处理器的寄存器中的数据[休学例子,要加图CPU,寄存器]。

I/O状态信息: 包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表。

记账信息: 可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等。

其他信息

3.2 组织进程

  • 可以在内核源代码里找到它。所有运行在系统里的进程都以task_struct链表的形式存在内核里。

3.3 查看进程

我们在Linux环境中创建了一个profile.cpp的Cpp文件,然后编译运行生成了一个叫做profile的可执行文件,我们可以通过一下命令来查找进程:

ps ajx | head -1 && ps ajx | grep "查找进程的名字"

当我们运行profile后来查看:

ffd58a62b2c64c86b7a15f766c12e388.png

不难发现我们查询到了profile进程的一些基本信息,如果我们想不加上下面那一行的信息可以将命令后面多加一些内容:

ps ajx | head -1 && ps ajx | grep "查找进程的名字" | grep -v grep

02f471d420574b99bd40d319b751c7a0.png

当然,文件名可加可不接双引号。

我们还可以在./proc中查询:

ls ./proc

b37d46a831af41bcbc990997a6649482.png

3.4  通过系统调用获取进程标示符

  • 进程idPID
  • 父进程idPPID

我们向profile.cpp中写入以下代码:

  1 #include<iostream>
  2 #include<sys/types.h>
  3 #include<unistd.h>
  4 using namespace std;
  5 
  6 
  7 int main()
  8 {
  9   while(1)
 10   {
 11     pid_t ret=getpid();
 12     cout<<"hello"<<ret<<" "<<endl;
 13     pid_t t=fork();
 14     if(t==0)
 15     {
 16       while(1)
 17       {
 18       cout<<"我是一个子进程"<<" pid:"<<getpid()<<" ppid:"<<getppid()<<endl;
 19       sleep(1);
 20       }
 21     }
 22     else if(t>0)
 23     {                                                                                                                                                      
 24       while(1)
 25       {
 26       cout<<"我是一个父进程"<<" pid:"<<getpid()<<" ppid:"<<getppid()<<endl;
 27       sleep(1);
 28       }
 29     }
 30   }
 31   return 0;
 32 }

当我们查看进程时:

d5750cc6b1fb4ce2aafed73d675a19ef.png

fork()后执行流会变成两个,是先执行父进程还是子进程是由调度器决定的,fork()后的代码共享,我们通常是用if else 来进行分流的。

  • 运行 man fork 认识fork
RETURN VALUE
       On success, the PID of the child process is returned in the parent, and  0
       is  returned  in  the child.  On failure, -1 is returned in the parent, no
       child process is created, and errno is set appropriately.
  • fork有两个返回值
  • 父子进程代码共享,数据各自开辟空间,私有一份(采用写时拷贝)

当我们只读数据不写数据时,父子进程是共享代码的,而当有其中一个执行流尝试修改数据时OS就会在当前进程触发写时拷贝另外生成一份。

如何理解有两个返回值呢?

创建子进程本质上就是OS提供的一个函数,当函数内部进行return 时我们主体功能已经完成了。

目录
相关文章
|
2月前
|
Ubuntu Linux Anolis
Linux系统禁用swap
本文介绍了在新版本Linux系统(如Ubuntu 20.04+、CentOS Stream、openEuler等)中禁用swap的两种方法。传统通过注释/etc/fstab中swap行的方式已失效,现需使用systemd管理swap.target服务或在/etc/fstab中添加noauto参数实现禁用。方法1通过屏蔽swap.target适用于新版系统,方法2通过修改fstab挂载选项更通用,兼容所有系统。
199 3
Linux系统禁用swap
|
2月前
|
Linux
Linux系统修改网卡名为eth0、eth1
在Linux系统中,可通过修改GRUB配置和创建Udev规则或使用systemd链接文件,将网卡名改为`eth0`、`eth1`等传统命名方式,适用于多种发行版并支持多网卡配置。
259 3
|
19天前
|
监控 关系型数据库 MySQL
在CentOS系统中,如何统计哪个进程打开了文件描述符?
利用上述方法,你可以有效地监控和统计CentOS系统中的进程打开的文件描述符数量,以帮助排查错误或优化系统配置。通过组合使用各种工具和命令,可以获得对系统状态和行为的深入了解,进而做出相应的调整和
93 5
|
Ubuntu Linux 网络安全
Linux系统初始化脚本
一款支持Rocky、CentOS、Ubuntu、Debian、openEuler等主流Linux发行版的系统初始化Shell脚本,涵盖网络配置、主机名设置、镜像源更换、安全加固等多项功能,适配单/双网卡环境,支持UEFI引导,提供多版本下载与持续更新。
232 0
Linux系统初始化脚本
|
3月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
190 18
|
2月前
|
安全 Linux Shell
Linux系统提权方式全面总结:从基础到高级攻防技术
本文全面总结Linux系统提权技术,涵盖权限体系、配置错误、漏洞利用、密码攻击等方法,帮助安全研究人员掌握攻防技术,提升系统防护能力。
227 1
|
2月前
|
监控 安全 Linux
Linux系统提权之计划任务(Cron Jobs)提权
在Linux系统中,计划任务(Cron Jobs)常用于定时执行脚本或命令。若配置不当,攻击者可利用其提权至root权限。常见漏洞包括可写的Cron脚本、目录、通配符注入及PATH变量劫持。攻击者通过修改脚本、创建恶意任务或注入命令实现提权。系统管理员应遵循最小权限原则、使用绝对路径、避免通配符、设置安全PATH并定期审计,以防范此类攻击。
869 1
|
3月前
|
缓存 监控 Linux
Linux系统清理缓存(buff/cache)的有效方法。
总结而言,在大多数情形下你不必担心Linux中buffer与cache占用过多内存在影响到其他程序运行;因为当程序请求更多内存在没有足够可用资源时,Linux会自行调整其占有量。只有当你明确知道当前环境与需求并希望立即回收这部分资源给即将运行重负载任务之前才考虑上述方法去主动干预。
1364 10
|
3月前
|
安全 Linux 数据安全/隐私保护
为Linux系统的普通账户授予sudo访问权限的过程
完成上述步骤后,你提升的用户就能够使用 `sudo`命令来执行管理员级别的操作,而无需切换到root用户。这是一种更加安全和便捷的权限管理方式,因为它能够留下完整的权限使用记录,并以最小权限的方式工作。需要注意的是,随意授予sudo权限可能会使系统暴露在风险之中,尤其是在用户不了解其所执行命令可能带来的后果的情况下。所以在配置sudo权限时,必须谨慎行事。
502 0
|
3月前
|
Ubuntu Linux 开发者
国产 Linux 发行版再添新成员,CutefishOS 系统简单体验
当然,系统生态构建过程并不简单,不过为了帮助国产操作系统优化生态圈,部分企业也开始用国产操作系统替代 Windows,我们相信肯定会有越来越多的精品软件登录 Linux 平台。
242 0