【Java|多线程与高并发】JUC中常用的类和接口

简介: JUC是Java并发编程中的一个重要模块,全称为Java Util Concurrent(Java并发工具包),它提供了一组用于多线程编程的工具类和框架,帮助开发者更方便地编写线程安全的并发代码。

1. JUC是什么

JUC是Java并发编程中的一个重要模块,全称为Java Util Concurrent(Java并发工具包),它提供了一组用于多线程编程的工具类和框架,帮助开发者更方便地编写线程安全的并发代码。


本文主要介绍Java Util Concurrent下的一些常用接口和类


2. Callable接口

Callable接口类似于Runnable. 有一点区别就是Runable描述的任务没有返回值,而Callable接口是带有返回值的


示例:


Callable<返回值类型> callable = new Callable<Integer>() {
    @Override
    public 返回值类型 call() throws Exception {
       // 执行的任务      
    }
};

Callable接口定义了一个call()方法,因此在创建实例的时要实现这个方法. 该方法在任务执行完成后返回一个结果,并且可以抛出异常。


与Runnable不同,Callable描述的任务不能直接传给线程去执行. 因此需要借助FutureTask<T>这个类


FutureTask<返回值类型> futureTask = new FutureTask<>(callable);

获取上述任务的返回值可以使用 FuturTask提供的get方法.


示例:

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Callable<Integer> callable = new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                int ret = 0;
                for (int i = 1; i <= 10; i++) {
                    ret += i;
                }
                return ret;
            }
        };
        FutureTask<Integer> futureTask = new FutureTask<>(callable);
        Thread t1 = new Thread(futureTask);
        t1.start();
        System.out.println(futureTask.get());
    }

运行结果:


e0e796a155344deebe004341c51ddd2d.png

3. ReentrantLock

ReentrantLock:ReentrantLock是Lock接口的一个实现类,它实现了Lock接口的所有方法。ReentrantLock支持重入性,也就是说同一个线程可以多次获取同一个锁,而不会产生死锁。这种特性使得ReentrantLock可以用于更复杂的线程同步场景。


在ReentrantLock中,有三个十分重要的方法:


1.lock():加锁

2.unlock():解锁.

3.tryLock(): 用于尝试获取锁,如果锁是可用的,就立即获取并返回true,如果锁不可用,就立即返回false,而不会阻塞当前线程。还可以指定获取锁的最大等待时间.

与synchronized不同,它的加锁和解锁操作时分开的,需要自己去添加.


这也可能会导致如果在加锁之后,代码出现异常,则有可能执行不到unlock方法.这也是ReentranLock的一个小弊端.但我们可以通过使用try finally来避免.


tryLock方法有两个版本:


cba26b7b082d4720b05cd60fccec45ee.png


无参的tryLock()方法用于尝试获取锁,如果锁是可用的,就立即获取并返回true,如果锁不可用,就立即返回false,而不会阻塞当前线程。


而另一个版本的tryLock()方法,可以指定超时时间来尝试获取锁


在实际开发中, 使用这种"死等的策略"往往要慎重,tryLock()让我们面对这种情况有更多的选择


ReentrantLock可以实现公平锁. 默认是非公平的.


但当我们创建实例时,传入参数true时.就变成公平锁了


ReentrantLock reentrantLock = new ReentrantLock(true);

synchronize搭配wait/notify方法来实现线程的等待通知的,唤醒的线程是随机的


ReentrantLock搭配Condition类实现线程等待通知的.可以指定线程来进行唤醒


synchronized是Java中的关键字,底层是JVM实现的(C++)


ReentranLock 是标准库的一个类,底层是基于Java实现的


4. 原子类

原子类是为了解决多线程环境下的竞态条件(Race Condition)和数据不一致的问题。在多线程环境下,如果多个线程同时对一个共享变量进行读取和写入操作,可能会导致数据的不一致性,从而产生错误的结果。


原子类是基于CAS实现的


Java提供了多种原子类,常用的原子类有以下四个:


1.AtomicInteger:用于对int类型的变量进行原子操作。

2.AtomicLong:用于对long类型的变量进行原子操作。

3.AtomicBoolean:用于对boolean类型的变量进行原子操作。

4.AtomicReference:用于对引用类型的变量进行原子操作。

接下来使用原子类AtomicInteger来实现两个线程针对同一个变量自增50000次的操作.


因为是类的实例对象,我们不能直接对类的实例对象进行++操作. 只能借助类提供的一些方法


AtomicInteger的一些方法:

AtomicInteger atomicInteger = new AtomicInteger();
// atomicInteger++
atomicInteger.getAndIncrement();
// ++atomicInteger
atomicInteger.incrementAndGet();
// atomicInteger--
atomicInteger.getAndDecrement();
// --atomicInteger
atomicInteger.decrementAndGet();
public class Demo23 {
    public static void main(String[] args) throws InterruptedException {
        AtomicInteger atomicInteger = new AtomicInteger();
        Thread t1 = new Thread(()->{
            for (int i = 0; i < 50000; i++) {
                atomicInteger.getAndIncrement();
            }
        });
        Thread t2 = new Thread(() ->{
            for (int i = 0; i < 50000; i++) {
                atomicInteger.getAndIncrement();
            }
        });
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println(atomicInteger);
    }
}

运行结果:


fd85cd57bcbc46b7b300f87d51fbe222.png

如果不用原子类,就需要使用synchronized来实现.


5. 线程池

线程池在我之前的文章中详细介绍过,这里就不再这里进行赘述了. 感兴趣的小伙伴可以看这篇文章: 【Java|多线程与高并发】线程池详解


6. 信号量

信号量(Semaphore)维护了一个许可计数器,表示可用的许可数量。当一个线程需要访问共享资源时,它必须先获取一个许可,如果许可数量为0,则线程将被阻塞,直到有可用的许可。当线程使用完共享资源后,它必须释放许可,以便其他线程可以获取许可并访问资源。


信号量的许可数量可以在创建信号量实例时进行设置

// 设置信号量的许可数量为 5
Semaphore semaphore = new Semaphore(5);

信号量中提供了两个主要操作:P(等待)和V(释放)。


P操作: 会尝试获取一个信号量的许可,如果许可数量不为0,则可以成功获取许可并继续执行;如果许可数量为0,则线程将被阻塞,直到有其他线程释放许可为止。


V操作: 会释放一个信号量的许可,使得其他被阻塞的线程可以获取许可并继续执行。


P操作对应的方法为acquire()


V操作对应的方法为release()


例如:

public class Demo24 {
    public static void main(String[] args) throws InterruptedException {
        Semaphore semaphore = new Semaphore(5);
        semaphore.acquire();
        semaphore.acquire();
        semaphore.acquire();
        semaphore.acquire();
        semaphore.acquire();
        System.out.println("此时信号量的许可数量为0");
        semaphore.acquire();
        semaphore.release();
    }
}

运行结果:

c81089912b6747aa9747acf35de28d51.png



信号量可以通过控制许可的数量,可以限制同时访问共享资源的线程数量,从而避免竞争条件和数据不一致性。


7. CoutDownLatch

CountDownLatch(倒计时门闩)是Java并发编程中的一种同步工具,用于等待一组线程完成某个任务。


通过CountDownLatch的构造方法,指定等待线程的数量(计数器).

// 设置等待线程的数量为 5
CountDownLatch countDownLatch = new CountDownLatch(5);


当一个线程完成了自己的任务后,可以调用CountDownLatch的countDown()方法将计数器减1。其他线程可以通过调用CountDownLatch的await()方法来等待计数器变为0。


示例:

public class Demo25 {
    public static void main(String[] args) throws InterruptedException {
        CountDownLatch countDownLatch = new CountDownLatch(5);
        for (int i = 0;i < 5;i++){
            Thread t = new Thread(() ->{
                System.out.println(Thread.currentThread().getName()+" 执行任务");
                countDownLatch.countDown();
            });
            t.start();
        }
        countDownLatch.await();
    }
}

指定CoutDownLatch等待线程的数量为5,并创建5个线程. 线程执行完后执行countDown()方法. 并调用await()等待计数器变为0.


运行结果:


c338eb363b2046c4a58aac1ef0ff8564.png



如果计数器的初始值大于等于等待的线程数量,会进入阻塞等待状态。


更改计数器的值为6,运行结果:


44f3957a69b546f384880d059e92eb1d.png


为了避免上述情况,可以使用await的一个重载版本来设置最大等待时间


ec33ffad1e58458aadbdd19a3cb551cf.png


8. 线程安全的集合类


1.Hashtable和ConcurrentHashMap:线程安全的哈希表实现,支持高并发的读写操作。


2.CopyOnWriteArrayList:线程安全的动态数组实现,适用于读多写少的场景


3.CopyOnWriteArraySet:线程安全的集合实现,基于CopyOnWriteArrayList,适用于读多写少的场景。


4.ConcurrentLinkedQueue:线程安全的无界队列实现,支持高并发的入队和出队操作。


5.BlockingQueue接口的实现类有: ArrayBlockingQueue、LinkedBlockingQueue、LinkedTransferQueue等,用于实现线程安全的阻塞队列。


6.ConcurrentSkipListMap:线程安全的跳表实现的有序映射表,支持高并发的读写操作。


7.ConcurrentSkipListSet:线程安全的跳表实现的有序集合,支持高并发的读写操作。


对于Hashtable和ConcurrentHashMap:

Hashtable并不建议使用. 它是用synchronized修饰方法.相当于对this进行加锁. 一个哈希表只有一个锁.

推荐使用ConcurrentHashMap. 这个类背后做了很多优化策略.


ConcurrentHashMap是给每个哈希桶进行加锁.


当两个线程访问同一个哈希桶,才会有冲突. 如果不是同一个哈希桶,就没有锁冲突.因此大大降级了锁冲突的概率


ConcurrentHashMap只给写操作加锁,读操作不加锁.


当多个线程同时进行写操作才会有锁冲突,同时进行读操作并不会有锁冲突. 当有的线程在写,有的线程在读.也不存在线程安全问题. ConcurrentHashMap保证读到的数据不会是写了一半的,要么是写之前的,要么就是写之后的.


ConcurrentHashMap充分使用了CAS的特性. 内部有很多使用到CAS的地方,而不是直接加锁


ConcurrentHashMap对扩容操作进行了特殊优化.


在扩容过程中,旧的哈希表和新的哈希表会同时存在一段时间.每次进行哈希表操作的操作,都会把旧的哈希表中的元素搬运一部分,直到搬运完成. 避免了扩容时间过长,造成卡顿的情况


HashMap,Hashtable和ConcurrentHashMap的区别,这也是一个常见面试题.


回答这个问题. 可以从线程安全方面,HashMap是线程不安全的.Hashtable和ConcurrentHashMap是线程安全的,然后回答Hashtable和ConcurrentHashMap的区别. ConcurrentHashMap与Hashtable相比做了哪些改进等.


CopyOnWriteArrayList适用于读多写少的场景.

一般情况下,如果有的线程在进行写作操(修改),优点线程在读,很可能会读到修改了一半的数据.因此CopyOnWriteArrayList为了解决这个问题,就会把原来的数据复制一份,写操作就会在这个拷贝的数据上进行


但如果数据特别多/修改特别频繁,就不适合使用了


感谢你的观看!希望这篇文章能帮到你!

专栏: 《从零开始的Java学习之旅》在不断更新中,欢迎订阅!

“愿与君共勉,携手共进!”



相关文章
|
2天前
|
安全 Java
在 Java 中使用实现 Runnable 接口的方式创建线程
【10月更文挑战第22天】通过以上内容的介绍,相信你已经对在 Java 中如何使用实现 Runnable 接口的方式创建线程有了更深入的了解。在实际应用中,需要根据具体的需求和场景,合理选择线程创建方式,并注意线程安全、同步、通信等相关问题,以确保程序的正确性和稳定性。
|
1天前
|
缓存 Java 调度
Java中的多线程编程:从基础到实践
【10月更文挑战第24天】 本文旨在为读者提供一个关于Java多线程编程的全面指南。我们将从多线程的基本概念开始,逐步深入到Java中实现多线程的方法,包括继承Thread类、实现Runnable接口以及使用Executor框架。此外,我们还将探讨多线程编程中的常见问题和最佳实践,帮助读者在实际项目中更好地应用多线程技术。
8 3
|
3天前
|
监控 安全 Java
Java多线程编程的艺术与实践
【10月更文挑战第22天】 在现代软件开发中,多线程编程是一项不可或缺的技能。本文将深入探讨Java多线程编程的核心概念、常见问题以及最佳实践,帮助开发者掌握这一强大的工具。我们将从基础概念入手,逐步深入到高级主题,包括线程的创建与管理、同步机制、线程池的使用等。通过实际案例分析,本文旨在提供一种系统化的学习方法,使读者能够在实际项目中灵活运用多线程技术。
|
1天前
|
缓存 安全 Java
Java中的多线程编程:从基础到实践
【10月更文挑战第24天】 本文将深入探讨Java中的多线程编程,包括其基本原理、实现方式以及常见问题。我们将从简单的线程创建开始,逐步深入了解线程的生命周期、同步机制、并发工具类等高级主题。通过实际案例和代码示例,帮助读者掌握多线程编程的核心概念和技术,提高程序的性能和可靠性。
6 2
|
2天前
|
Java
Java中的多线程编程:从基础到实践
本文深入探讨Java多线程编程,首先介绍多线程的基本概念和重要性,接着详细讲解如何在Java中创建和管理线程,最后通过实例演示多线程的实际应用。文章旨在帮助读者理解多线程的核心原理,掌握基本的多线程操作,并能够在实际项目中灵活运用多线程技术。
|
2天前
|
Java 开发者
Java中的多线程基础与应用
【10月更文挑战第24天】在Java的世界中,多线程是提高效率和实现并发处理的关键。本文将深入浅出地介绍如何在Java中创建和管理多线程,以及如何通过同步机制确保数据的安全性。我们将一起探索线程生命周期的奥秘,并通过实例学习如何优化多线程的性能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编程的大门。
7 0
|
3月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
93 1
|
6月前
|
设计模式 监控 Java
Java多线程基础-11:工厂模式及代码案例之线程池(一)
本文介绍了Java并发框架中的线程池工具,特别是`java.util.concurrent`包中的`Executors`和`ThreadPoolExecutor`类。线程池通过预先创建并管理一组线程,可以提高多线程任务的效率和响应速度,减少线程创建和销毁的开销。
175 2
|
6月前
|
Java 数据库
【Java多线程】对线程池的理解并模拟实现线程池
【Java多线程】对线程池的理解并模拟实现线程池
54 1
|
3月前
|
安全 算法 Java
17 Java多线程(线程创建+线程状态+线程安全+死锁+线程池+Lock接口+线程安全集合)(下)
17 Java多线程(线程创建+线程状态+线程安全+死锁+线程池+Lock接口+线程安全集合)
73 6

热门文章

最新文章