【Java|多线程与高并发】设计模式-单例模式(饿汉式,懒汉式和静态内部类)

简介: 设计模式是一种在软件开发中常用的解决复杂问题的方法论。它提供了一套经过验证的解决方案,用于解决特定类型问题的设计和实现。设计模式可以帮助开发人员提高代码的可重用性、可维护性和可扩展性。

1. 前言

设计模式是一种在软件开发中常用的解决复杂问题的方法论。它提供了一套经过验证的解决方案,用于解决特定类型问题的设计和实现。设计模式可以帮助开发人员提高代码的可重用性、可维护性和可扩展性。


设计模式有很多,本文主要介绍单例模式.

08c287700ab546cab2b269f6a08961fe.gif


2. 单例模式

单例模式是一种创建型设计模式,它保证一个类只有一个实例,并提供一个全局访问点来获取该实例。


3. 如何保证一个类只有一个实例

在Java中,通常使用static关键字来保证 类只有唯一的实例.


在单例模式中,类的构造函数被私有化,以防止外部代码直接创建实例。然后,通过一个静态方法或静态变量来获取类的唯一实例。


如果实例不存在,则创建一个新的实例并返回;如果实例已存在,则直接返回该实例。


而是实现上述的方法有很多,下面介绍三种常见的实现模式:


1.饿汉式

2.懒汉式

3.静态内部类



4. 饿汉式单例模式

饿汉式单例: 在类加载时就创建实例,保证在任何情况下都有一个实例可用。


代码示例:

public class Singleton {
    private static final Singleton instance = new Singleton();
    private Singleton() {
    // 私有化构造函数
    }
    public static Singleton getInstance() {
        return instance;
    }
}

代码分析:


df8189cff6b048b0a8837859589fd47c.png



私有化构造函数使得外部无法直接创建实例,如果其它线程想到得到Singleton类的实例,只能通过Singleton类提供的getInstance()方法得到.


5. 懒汉式单例模式

懒汉式单例: 延迟加载实例,只有在需要时才创建实例。


代码示例:


public class SingletonLazy {
    private static SingletonLazy instance = null;
    private SingletonLazy(){
    // 私有化构造方法
    }
    public static SingletonLazy getInstance(){
        if (instance == null){
            instance = new SingletonLazy();
        }
        return instance;
    }
}

代码分析:


82a4eca4944c46e6a3a8c7a1b5fc16e7.png



如果后续代码中没有调用getInstance方法,那么就把创建实例那一步给省下来了.


上述代码中,那种实现单例模式的方式是线程安全的?


答案是 饿汉模式


饿汉模式并没有涉及到修改,而懒汉模式即涉及到读有涉及到修改.那么在多线程模式中就不安全了.


设想一个场景, 如果在懒汉模式下,两个线程同时去调用getInstance方法,如果一个线程读到的instance为null,并给instance进行实例的创建,而另外一个线程读到的instance还是为null,又给instance创建了一次实例.那么instance就被创建多次了


6. 实现线程安全的懒汉式单例

既然懒汉模式在多线程的环境下不安全,那么如果保证懒汉模式在多线程的环境下安全呢?


既然涉及到多线程,就离不开"锁",也就是 synchronized


示例:


bd7a32c556e945fa8b328247d311e9d5.png


通过加锁的方式,解决了线程安全问题,但是又带来了新的问题.


懒汉式单例只是第一次调用getInstance方法时才会发生线程不安全问题.一旦创建好了,线程就安全了.


但上述通过加锁的方式,会导致线程已经安全时仍然时需要加锁,有些多此一举了. 且加锁开销比较大,影响效率.


那么如果保证线程安全时不加锁呢?


实例没有创建前,线程不安全.实例创建之后,线程安全. 那么就可以在加锁操作前在进行一次判断.

public class SingletonLazy {
    private static SingletonLazy instance = null;
    private SingletonLazy(){
    }
    public static SingletonLazy getInstance(){
        if (instance == null) {
            synchronized (SingletonLazy.class) {
                if (instance == null){
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }
}

代码分析:



7a0a29b05a804f7bb2d1cd75e94c0d4d.png


使用双重if保证只创建一次实例以及保证在线程安全时不进行加锁. 这里要重点进行理解.


但仔细思考上述代码仍然有一个问题.


假如两个线程同时调用getInstance方法,第一个线程拿到锁,进入第二层if,开始进行new对象.


这里的new操作可以分为:


1.申请内存,得到内存首地址

2.调用构造方法,来初始化实例

3.把内存的首地址赋值给instance引用

上述的new操作,编译器可能会进行"指令重排序". 就可能会导致无序写入的问题


上述步骤中的2和3,在单线程环境下是可以调换顺序的,并不会影响结果.


但在多线程环境中就会导致无序写入问题:


1.线程A执行到instance = new Singleton();这行代码时,由于指令重排序,可能会先执行分配内存空间、初始化实例对象、将instance指向内存空间这三个操作的任意组合,而不是按照代码顺序执行。

2.假设线程A执行完了分配内存空间和初始化实例对象的操作,但还没有将instance指向内存空间,此时线程B执行到第一个instance == null的判断,结果为false,就会直接返回instance,但此时instance并没有正确初始化。

为了解决上述问题,就可以使用volatile关键字. 它可以禁止指令重排序优化,保证instance的写操作先于读操作,从而避免其他线程在没有正确初始化实例时获取到instance。


public class SingletonLazy {
    private static volatile SingletonLazy instance = null;
    private SingletonLazy(){
    }
    public static SingletonLazy getInstance(){
        if (instance == null) {
            synchronized (SingletonLazy.class) {
                if (instance == null){
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }
}

上述就是一个在多线程环境下完全安全的懒汉式单例模式的写法.


7. 静态内部类实现单例模式

除了上述方式,使用静态内部类也能实现单例模式.


该方式利用静态内部类的特性来实现懒加载和线程安全。


代码示例:

public class Singleton {
    private Singleton() {
        // 私有化构造函数
    }
    private static class SingletonHolder {
        private static final Singleton instance = new Singleton();
    }
    public static Singleton getInstance() {
        return SingletonHolder.instance;
    }
}

静态内部类SingletonHolder持有Singleton的唯一实例,当第一次调用getInstance方法时,才会触发SingletonHolder的初始化,从而创建实例。


由于静态内部类的初始化是线程安全的,因此可以确保在多线程环境下只有一个实例被创建。


8. 总结

本文主要介绍了饿汉式,懒汉式和静态内部类三种实现单例模式的方式,其中 懒汉式单例 很重要,要着重理解双重if的含义.


需要注意的是,以上方式都可以在多线程环境下保证单例的正确创建,但在特殊情况下,如使用反射或序列化/反序列化等机制,仍然可能破坏单例的唯一性。


在实际应用中,需要根据具体场景和需求选择合适的单例模式实现方式。


5cf20061bb5f4d108508ee06f60b0eaf.gif

相关文章
|
11天前
|
设计模式 安全 Java
Java编程中的单例模式:理解与实践
【10月更文挑战第31天】在Java的世界里,单例模式是一种优雅的解决方案,它确保一个类只有一个实例,并提供一个全局访问点。本文将深入探讨单例模式的实现方式、使用场景及其优缺点,同时提供代码示例以加深理解。无论你是Java新手还是有经验的开发者,掌握单例模式都将是你技能库中的宝贵财富。
15 2
|
4天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
23 9
|
7天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
4天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
7天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
21 3
|
6天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
7天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
8天前
|
安全 Java 编译器
Java多线程编程的陷阱与最佳实践####
【10月更文挑战第29天】 本文深入探讨了Java多线程编程中的常见陷阱,如竞态条件、死锁、内存一致性错误等,并通过实例分析揭示了这些陷阱的成因。同时,文章也分享了一系列最佳实践,包括使用volatile关键字、原子类、线程安全集合以及并发框架(如java.util.concurrent包下的工具类),帮助开发者有效避免多线程编程中的问题,提升应用的稳定性和性能。 ####
33 1
|
11天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
12天前
|
Java 开发者
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
在Java多线程编程的世界里,Lock接口正逐渐成为高手们的首选,取代了传统的synchronized关键字
40 4