[C++] 类与对象(中)类中六个默认成员函数(1)上

简介: [C++] 类与对象(中)类中六个默认成员函数(1)上

1、类的六个默认成员函数

如果一个类中什么成员都没有,简称为空类。空类中真的什么都没有吗?并不是,任何类在什么都不写时,编译器会自动生成以下6个默认成员函数。


2、构造函数

2.1 构造函数的概念

我们这里来看看日期类的初始化:

class Date
{
public:
    void Init(int year, int month, int day)
    {
        _year = year;
        _month = month;
        _day = day;
    }
    void Print()
    {
      cout << _year << "/" << _month << "/" << _day << endl;
    }
private:
    int _year;
    int _month;
    int _day;
};
int main()
{
    Date d1;
    d1.Init(2022, 7, 5);
    d1.Print();
    return 0;
}

运行结果:

我们刚接触C++,一定会这样初始化。

如果我们实例化的对象太多了,忘记初始化对象了,程序运行出来的结果可能就是随机值了,也可能出问题。

这里C++祖师爷想到了,为我们设计了构造函数。

我们先来看一下忘记初始化直接打印的结果:

这里是随机值,那这是为什么呢?我们接着往下看。

构造函数是一个特殊的成员函数,名字与类名相同,创建类类型对象时由编译器自动调用,以保证每个数据成员都有 一个合适的初始值,并且在对象整个生命周期内只调用一次。

2.2 特性

构造函数是特殊的成员函数,需要注意的是,构造函数虽然名称叫构造,但是构造函数的主要任务并不是开空间创建对象,而是初始化对象。

其特征如下:

1. 函数名与类名相同。

2. 无返回值(不是void,是不用写)。

3. 对象实例化时编译器自动调用对应的构造函数。

4. 构造函数可以重载。


我们先写一个日期类的构造函数来看看:

class Date
{
public:
  Date()//构造函数,无参构造
  {
    cout << "Date()" << endl;
    _year = 1;
    _month = 1;
    _day = 1;
  }
  void Print()
  {
    cout << _year << "/" << _month << "/" << _day;
  }
private:
  int _year;
  int _month;
  int _day;
};

我们测试看一下:

我们main函数里没有调用构造函数,但是这里打印了我们做的标记,这里我们实验出来了实例化对象时构造函数是自动调用的。

我们再来看将我们写的构造函数注释掉会发生什么:

我们能看到,注释掉后,仍然能打印出来,只不过是随机值。因为当我们不写,编译器会自动生成默认的构造函数,并自动调用。


C++将类型分为内置类型(基本类型):如int,char,double,int*……(自定义类型*也是);


自定义类型:如class,struct,union……。


并且这里我们能看出来,对于内置类型的成员不会处理,在C++11,支持成员变量给缺省值,算是补漏洞了。

2.2.1 构造函数的重载:

class Date
{
public:
  Date()
  {
    cout << "Date()" << endl;
    _year = 1;
    _month = 1;
    _day = 1;
  }
  Date(int year, int month, int day)
  {
    _year = year;
    _month = month;
    _day = day;
  }
  void Print()
  {
    cout << _year << "/" << _month << "/" << _day << endl;
  }
private:
  int _year;
  int _month;
  int _day;
};
int main()
{
    Date d1;
  d1.Print();
  Date d2(2023, 8, 1);//这里初始化必须是这样写,这是语法
  d2.Print();
    return 0;
}

运行结果:

注意:我们在实例化对象的时候,当调用的构造函数没有参数,不能在对象后加括号,语法规定。

如果这样写,编译器分不清这到底是函数声明还是在调用。d2不会混淆是因为有传值,函数声明不会出现那样的写法。

2.2.2 全缺省的构造函数:

我们其实可以将上面的两个构造函数合并为一个

class Date
{
public:
  Date(int year = 1, int month = 1, int day = 1)
  {
    _year = year;
    _month = month;
    _day = day;
  }
  void Print()
  {
    cout << _year << "/" << _month << "/" << _day << endl;
  }
private:
  int _year;
  int _month;
  int _day;
};
int main()
{
    Date d1;
  d1.Print();
  Date d2(2023, 8, 1);
  d2.Print();
  Date d3(2023, 9);
  d3.Print();
    return 0;
}

运行结果:

全缺省构造函数才是最适用的。无参构造与全缺省可以同时存在,但是不建议这样写,虽然不报错,但是在调用全缺省时我们不想传参,编译器不知道我们到底想调用哪个构造,会产生二义性。

我们再看用两个栈实现队列的问题:

class Stack
{
public:
  Stack(int n = 4)
  {
    if (n == 0)
    {
      _a = nullptr;
      _size = -1;
      _capacity = 0;
    }
    else
    {
      int* tmp = (int*)realloc(_a, sizeof(int) * n);
      if (tmp == nullptr)
      {
        perror("realloc fail");
        exit(-1);
      }
      _a = tmp;
      _size = -1;
      _capacity = n;
    }
  }
  void Push(int n)
  {
    if (_size + 1 == _capacity)
    {
      int newcapacity = _capacity == 0 ? 4 : 2 * _capacity;
      int* tmp = (int*)realloc(_a, sizeof(int) * newcapacity);
      if (nullptr == tmp)
      {
        perror("realloc fail:");
        exit(-1);
      }
      _a = tmp;
      _capacity = newcapacity;
    }
    _a[_size++] = n;
  }
  int Top()
  {
    return _a[_size];
  }
  void Pop()
  {
    assert(_size > -1);
    _size--;
  }
  void Destort()
  {
    free(_a);
    _a = nullptr;
    _size = _capacity = 0;
  }
  bool Empty()
  {
    return _size == -1;
  }
private:
  int* _a;
  int _size;
  int _capacity;
};
class MyQueue
{
private:
  Stack _pushst;
  Stack _popst;
};

一般情况下都需要我们自己写构造函数,决定初始化方式,成员变量全是自定义类型,可以考虑不写构造函数。会调用自定义类型的默认构造函数。


总结:无参构造函数、全缺省构造函数、我们不写编译器默认生成的构造函数,都可以认为是默认构造函数,并且默认构造函数只能存在一个(多个并存会产生二义性)。

3、析构函数

3.1 析构函数的概念

析构函数:与构造函数功能相反,析构函数不是完成对对象本身的销毁,局部对象销毁工作是由编译器完成的。而对象在销毁时会自动调用析构函数,完成对象中资源的清理工作。

3.2 特性

析构函数是特殊的成员函数,其特征如下:

1. 析构函数名是在类名前加上字符 ~。

2. 无参数无返回值类型。

3. 一个类只能有一个析构函数。若未显式定义,系统会自动生成默认的析构函数(对内置类型不做处理,自定义类型会调用它自己的析构函数)。注意:析构函数不能重载。

4. 对象生命周期结束时,C++编译系统会自动调用析构函数。


我们先来看日期类的析构:

class Date
{
public:
  Date(int year = 1, int month = 1, int day = 1)
  {
        cout << "Date(int year = 1, int month = 1, int day = 1)" << endl;
    _year = year;
    _month = month;
    _day = day;
  }
  void Print()
  {
    cout << _year << "/" << _month << "/" << _day << endl;
  }
  ~Date()
  {
    cout << "~Date()" << endl;
    _year = 0;
    _month = 0;
    _day = 0;
  }
private:
  int _year;
  int _month;
  int _day;
};
int main()
{
  Date d1;
  Date d2;
    return 0;
}

运行结果:

我们这里可以看出析构函数也是自动调用的。

我们不写,编译器自动生成默认的析构函数。

析构函数的调用顺序跟栈类似,后实例化的先析构。

相关文章
|
5月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
131 0
|
5月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
211 0
|
7月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
265 12
|
8月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
9月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
8月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
156 16
|
9月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
8月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
8月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
8月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
431 6