[数据结构 -- 手撕排序算法第六篇] 递归实现快速排序(集霍尔版本,挖坑法,前后指针法为一篇的实现方法,很能打)1

简介: [数据结构 -- 手撕排序算法第六篇] 递归实现快速排序(集霍尔版本,挖坑法,前后指针法为一篇的实现方法,很能打)1

1、常见的排序算法

1.1 交换排序基本思想

冒泡排序属于交换排序之一,我们先来了解以下冒泡排序思想。
基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。



2、快速排序的实现方法

递归实现与二叉树的前序遍历很相似,将区间划分为左右两半部分的常见方式有三种:1.hoare版本;2.挖坑法;3.左右指针法。

2.1 基本思想

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中

的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右

子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止 。


所以,在后面很重要的一点就是,左边走找小,右边走找大。

3 hoare(霍尔)版本

3.1 实现思路

我们规定排升序,排序数组名称为a,基准值 key,基准值下标 keyi,左 left,右 right。
1.选出一个key,key可以是需要排序的数组中任意一个元素,我们本篇文章选key为a[left];


2.从数组右端(尾部)往左走,当a[right] < key(a[keyi]),right停下来;


3.然后从数组左端(首部)往右走,当a[left] > key(a[keyi]),left停下来;


4.交换a[left], a[right];


5.循环步骤2、3、4,当 left与right 走到相同位置时,交换此位置的元素与 key,key 的位置就确定了。


6.此时 key 就将数组分为了左右两个区间,我们对左右两个区间分别使用前5步,然后再次确定了左右区间的key,递归左区间,再递归右区间,就实现了排序。


注意:步骤2、3的顺序不能换。至于为什么,我们思路图解后再说。

3.2 思路图解

我们的图解就是按照实现思路来画的。

3.3 为什么实现思路的步骤2、3不能交换

我们可以看到,思路图解里,当最后找到 3 时候是 R 先走,R先遇到 3,如果是 L 先走,左找大,L 遇见 3 不会停下来,会直接走到R的位置,R 位置是 9,这时候相遇,就交换,一旦交换,左区间就不是全部小于 key(6)了,这就会出现错误。因此,key 如果选在左边,右边先走。
Q:hoare版本我们是理解了,如果key选在右边,那是不是左边先走呢?


A:答案是一定的。这里其实就是 L遇到R 还是 R遇到L 的问题。我们依然可以用上面的解法来想这问题,当L遇到R 时,说明 R 已经停下,R 停下就是 a[right]<key,这时 L遇到R,相遇位置就是小于 key 的位置,交换(key,a[left]),这时最后一个小于 key 的元素就放在了最左边,而 key 就到了确定的位置,不用再调了,以key 为中点的左区间全部小于 key,右区间全大于 key;


key在右边,当 R遇到L 时,说明 L 已经停下,L 停下就是 a[left]>key,这时 R遇到L,相遇位置就是大于 key 的位置,交换(a[left],key),这时最后一个大于 key 的元素就放在了最右边,而 key 就到了确定的位置,不用再调了,以 key 为中点的左区间全部小于 key,右区间全大于 key。


所以如果 key 选在左边,就先走右边;key 选在右边,就先走左边。

3.4 hoare版本代码实现

// 快速排序hoare版本
int PartSort1(int* a, int left, int right)
{
  int keyi = left;
  while (left < right)
  {
    //右边找小
    while (left < right && a[right] >= a[keyi])
    {
      right--;
    }
    //左边找大
    while (left < right && a[left] <= a[keyi])
    {
      left++;
    }
    Swap(&a[left], &a[right]);
  }
  Swap(&a[keyi], &a[left]);
  return left;
}
void QuickSort(int* a, int left, int right)
{
  if (left >= right)
    return;
  int keyi = PartSort1(a, left, right);
  QuickSort(a, left, keyi - 1);
  QuickSort(a, keyi + 1, right);
}

3.5 hoare版本代码测试

void Swap(int* p1, int* p2)
{
  int tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
void Print(int* a, int n)
{
  for (int i = 0; i < n; i++)
  {
    printf("%d ", a[i]);
  }
  printf("\n");
}
 //快速排序递归实现
 //快速排序hoare版本
int PartSort1(int* a, int left, int right)
{
  int keyi = left;
  while (left < right)
  {
    //右边找小
    while (left < right && a[right] >= a[keyi])
    {
      right--;
    }
    //左边找大
    while (left < right && a[left] <= a[keyi])
    {
      left++;
    }
    Swap(&a[left], &a[right]);
  }
  Swap(&a[left], &a[keyi]);
  return left;
}
void QuickSort(int* a, int left, int right)
{
  if (left >= right)
    return;
  int keyi = PartSort1(a, left, right);
  QuickSort(a, left, keyi - 1);
  QuickSort(a, keyi + 1, right);
}
void test()
{
  int a[] = { 6,3,2,1,5,7,9 };
  QuickSort(&a, 0, sizeof(a) / sizeof(int) - 1);
  Print(&a, sizeof(a) / sizeof(int));
}
int main()
{
  test();
  return 0;
}



4、挖坑法

4.1 实现思路

我们规定排升序,排序数组名称为a,基准值 key,左 left,右 right。

1.选出一个key,key可以是需要排序的数组中任意一个元素,我们依然选key为a[left],将a[left]交给key保存起来,被选为key的元素位置就是坑位;


2.从数组右端(尾部)往左走,当a[right] < key,right停下来,将a[right]放到坑位中,坑位就换为下标为 right 的位置,此时right不动;


3.然后从数组左端(首部)往右走,当a[left] > key,left停下来,将a[left]放到坑位中,坑位就换为下标为 left 的位置,此时left不动;


4.循环步骤2、3,当 left与right 走到相同位置时,这个位置就是最后一个坑位,将key放到这个坑位中,key的最终位置就确定下来了,后面就不用再调整了。


5.此时 key 就将数组分为了左右两个区间,我们对左右两个区间分别使用前4步,然后再次确定了左右区间的key,递归左区间,再递归右区间,就实现了排序。
挖坑法与hoare版本的区别:


1.挖坑法不需要去想最后的 L与R 相遇的位置的元素要小于key,因为最终相遇位置是坑位,直接将 key 放入坑位就好了;


2.不用去想为什么选左边为 key 要右边先走,选右边为 key 要左边先走,当选左边为 key 时,因为需要填左边的坑,所以肯定是右边先走。左边找小,右边找大来理解这句话更合适。

4.2 思路图解



4.3 挖坑法代码实现

// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{
  int key = a[left];
  int hole = left;
  while (left < right)
  {
    //右边找小
    while (left < right && a[right] >= key)
    {
      right--;
    }
    a[hole] = a[right];
    hole = right;
    //左边找大
    while (left < right && a[left] <= key)
    {
      left++;
    }
    a[hole] = a[left];
    hole = left;
  }
  a[hole] = key;
  return hole;
}
void QuickSort(int* a, int left, int right)
{
  if (left >= right)
    return;
  int keyi = PartSort2(a, left, right);
  QuickSort(a, left, keyi - 1);
  QuickSort(a, keyi + 1, right);
}

4.4 挖坑法代码测试

void Swap(int* p1, int* p2)
{
  int tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
void Print(int* a, int n)
{
  for (int i = 0; i < n; i++)
  {
    printf("%d ", a[i]);
  }
  printf("\n");
}
// 快速排序挖坑法
int PartSort2(int* a, int left, int right)
{
  int key = a[left];
  int hole = left;
  while (left < right)
  {
    //右边找小
    while (left < right && a[right] >= key)
    {
      right--;
    }
    a[hole] = a[right];
    hole = right;
    //左边找大
    while (left < right && a[left] <= key)
    {
      left++;
    }
    a[hole] = a[left];
    hole = left;
  }
  a[hole] = key;
  return hole;
}
void QuickSort(int* a, int left, int right)
{
  if (left >= right)
    return;
  int keyi = PartSort2(a, left, right);
  QuickSort(a, left, keyi - 1);
  QuickSort(a, keyi + 1, right);
}
void test()
{
  int a[] = { 6,3,2,1,5,7,9 };
  QuickSort(&a, 0, sizeof(a) / sizeof(int) - 1);
  Print(&a, sizeof(a) / sizeof(int));
}
int main()
{
  test();
  return 0;
}

相关文章
|
1月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
53 4
|
14天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
113 61
|
1月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
41 2
|
2月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
27 1
|
2月前
|
算法 定位技术
数据结构与算法学习九:学习递归。递归的经典实例:打印问题、阶乘问题、递归-迷宫问题、八皇后问题
本文详细介绍了递归的概念、重要规则、形式,并展示了递归在解决打印问题、阶乘问题、迷宫问题和八皇后问题等经典实例中的应用。
48 0
|
22天前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
81 12
|
6月前
|
C语言
指针进阶(C语言终)
指针进阶(C语言终)
|
2月前
|
C语言
无头链表二级指针方式实现(C语言描述)
本文介绍了如何在C语言中使用二级指针实现无头链表,并提供了创建节点、插入、删除、查找、销毁链表等操作的函数实现,以及一个示例程序来演示这些操作。
32 0
|
3月前
|
存储 人工智能 C语言
C语言程序设计核心详解 第八章 指针超详细讲解_指针变量_二维数组指针_指向字符串指针
本文详细讲解了C语言中的指针,包括指针变量的定义与引用、指向数组及字符串的指针变量等。首先介绍了指针变量的基本概念和定义格式,随后通过多个示例展示了如何使用指针变量来操作普通变量、数组和字符串。文章还深入探讨了指向函数的指针变量以及指针数组的概念,并解释了空指针的意义和使用场景。通过丰富的代码示例和图形化展示,帮助读者更好地理解和掌握C语言中的指针知识。
113 4
|
4月前
|
C语言
【C初阶——指针5】鹏哥C语言系列文章,基本语法知识全面讲解——指针(5)
【C初阶——指针5】鹏哥C语言系列文章,基本语法知识全面讲解——指针(5)