【C语言进阶】-- 重点字符串函数内存函数及其模拟实现(strlen,strcmp,strcat...memcpy,memmove)

简介: 【C语言进阶】-- 重点字符串函数内存函数及其模拟实现(strlen,strcmp,strcat...memcpy,memmove)

前言

C语言中对字符和字符串的处理很是频繁,但是C语言本身是没有字符串类型的,字符串通常放在常量字符串 中或者 字符数组中。字符串常量适用于那些对它不做修改的字符串函数。

1、strlen

头文件:#include <string.h>

作用:字符串以 '\0' 作为结束标志,strlen 函数返回的是在字符串中 '\0' 前面出现的字符个数(不包含 '\0')。

注意:

1、参数指向的字符串必须要以 '\0' 结束。

2、函数的返回值是size_t,是无符号的(易错)。

测试:

#include <stdio.h>
#include <string.h>
int main()
{
  int len = strlen("abc");
  printf("%d\n", len);
  return 0;
}

运行结果:3

1.1 strlen的模拟实现

#include <stdio.h>
#include <assert.h>
//计数器实现
//int my_strlen(const char* str)//我们只是用这个字符串,不修改,因此使用const修饰
//{
//  assert(str);
//
//  int count = 0;
//
//  while (*str != '\0')
//  {
//    count++;
//    str++;
//  }
//  return count;
//}
//递归实现
int my_strlen(const char* str)//我们只是用这个字符串,不修改,因此使用const修饰
{
  if (*str != '\0')
    return 1 + my_strlen(str + 1);
  else
    return 0;
}
int main()
{
  char arr[] = "abc";
  int len = my_strlen(arr);
  printf("%d\n", len);
  return 0;
}

运行结果:3

strlen 的模拟可以有多种方法:

1.计数器(此方式可以做到不创建临时变量计算字符串长度)

2.递归

3.指针 - 指针

我们这里是用的计数器与递归两种方法写的。

2、strcpy

头文件:#include <string.h>

作用:将源字符串中的 '\0' 之前的字符拷贝到目标空间,包含 '\0'。

注意:

1、源字符串必须要以 '\0' 结束。

2、会将源字符串中的 '\0' 拷贝到目标空间。

3、目标空间必须足够大,以确保能存放源字符串。

4、目标空间必须可变(注意:目标字符串必须是有足够空间的,不能是一个常量字符串的指针)。

测试:

#include <string.h>
#include <stdio.h>
int main()
{
  char arr1[] = "abcdef";
  char arr2[20] = { 0 };
  strcpy(arr2, arr1)
  printf("%s\n", arr2);
  return 0;
}

结果:abcdef

2.1 strcpy的模拟实现

#include <string.h>
#include <assert.h>
#include <stdio.h>
char* my_strcpy(char* dest, const char* src)
{
  assert(dest && src);//只要有一个是空指针就报错
  char* head = dest;
  while (*dest++ = *src++)//这里做到了既拷贝,又能在遇到'\0'停止
  {
    ;
  }
  return head;
}
int main()
{
  char arr1[] = "abcdef";
  char arr2[20] = { 0 };
    //my_strcpy(arr2, arr1);
    //printf("%s\n", arr2);
  printf("%s\n", my_strcpy(arr2, arr1));
  return 0;
}

结果:abcdef

3、strcat

头文件:#include <string.h>

作用:将源字符串追加到目标字符串后。

自己不能追加自己,这样会陷入死循环。

注意:

1、源字符串与目标字符串必须以 '\0' 结束。

2、目标空间必须有足够的大,能容纳下源字符串的内容。

3、目标空间必须可修改(注意:目标字符串必须是有足够空间的,不能是一个常量字符串的指针)。

测试:

#include <string.h>
#include <stdio.h>
int main()
{
  char arr1[20] = "hello ";
  char arr2[] = "world";
  strcat(arr1, arr2);
  printf("%s", arr1);
  return 0;
}

运行结果:hello world

3.1 strcat的模拟实现

#include <assert.h>
#include <string.h>
#include <stdio.h>
char* my_strcat(char* dest, const char* src)
{
  assert(dest && src);
  char* head = dest;
  while (*dest != '\0')
  {
    dest++;//调整必须在这写,不能在判断条件里写。因为会走到'\0'后一位
  }
  while (*dest++ = *src++)
  {
    ;
  }
  return head;
}
int main()
{
  char arr1[20] = "hello ";
  char arr2[] = "world";
  my_strcat(arr1, arr2);
  printf("%s", arr1);
  return 0;
}

运行结果:hello world

4、strcmp

头文件:#include <string.h>

作用:比较两个字符串的大小(注意:这里比的不是字符串的长度,比的是对应位置字符的ASCII码值的大小)。

标准规定:

第一个字符串大于第二个字符串,返回大于 0 的数字

第一个字符串等于第二个字符串,返回 0

第一个字符串小于第二个字符串,返回小于 0 的数字

测试:

#include <string.h>
#include <stdio.h>
int main()
{
  char arr1[] = "abcd";
  char arr2[] = "abcc";
  printf("%d\n", strcmp(arr1, arr2));//最后一个字符分别是 d与c ,d的ASCII值大于c的ASCII值
  return 0;
}

运行结果:大于 0 的数字。

4.1 strcmp的模拟实现

#include <assert.h>
#include <string.h>
#include <stdio.h>
int my_strcmp(const char* str1, const char* str2)
{
  assert(str1 && str2);
  while (*str1 == *str2)
  {
        if ('\0' == *str1)
      return 0;
    str1++;
    str2++;
  }
  return *str1 - *str2;
}
int main()
{
  char arr1[] = "abcd";
  char arr2[] = "abcc";
  int ret = my_strcmp(arr1, arr2);
  printf("%d\n", ret);
  return 0;
}

运行结果:大于 0 的数字。

5、strstr

头文件:#include <string.h>

作用:在目标字符串中查找源字符串,如果找到,则返回目标字符串中第一次包含源字符串之后的所有字符串,若未找到,则返回NULL。

测试:

#include <string.h>
#include <stdio.h>
int main()
{
  char arr1[] = "abcdef";
  char arr2[] = "cd";
  char* p = strstr(arr1, arr2);
  if (NULL == p)
    printf("找不到!\n");
  else
    printf("%s\n", p);
  return 0;
}

运行结果:cdef。

5.1 strstr的模拟实现

#include <assert.h>
#include <string.h>
#include <stdio.h>
char* my_strstr(const char* str1, const char* str2)
{
  assert(str1 && str2);
  char* s1 = NULL;
  char* s2 = NULL;
  char* cp = (char*)str1;//const修饰的str1直接给会报警告
  while (*cp)
  {
    s1 = cp;
    s2 = (char*)str2;
    while (*s1 && *s2 && *s1 == *s2)
    {
      s1++;
      s2++;
    }
    if (*s2 == '\0')
      return cp;
    cp++;
  }
  return NULL;
}
int main()
{
  char arr1[] = "abcdef";
  char arr2[] = "cd";
  char* p = my_strstr(arr1, arr2);
  if (NULL == p)
    printf("找不到!\n");
  else
    printf("%s\n", p);
  return 0;
}

运行结果:cdef。

注意:我们这里用到的 cp 指针在不断记录每次开始比较的 str1 更新后的位置。

6、memcpy

头文件:#include <string.h>

作用:函数memcpy从开始的位置开始向后复制num个字节的数据到目标的内存位置。


注意:

1、这个函数在遇到 '\0' 的时候并不会停下来。

2、如果source和destination有任何的重叠,复制的结果都是未定义的。

测试:

#include <string.h>
#include <stdio.h>
int main()
{
  int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };
  int arr2[8] = { 0 };
  memcpy(arr2, arr1, 20);//拷贝20字节的数据
  for (int i = 0; i < 8; i++)
  {
    printf("%d ", arr2[i]);
  }
  return 0;
}

运行结果:1 2 3 4 5 0 0 0

6.1 memcpy的模拟实现

#include <assert.h>
#include <string.h>
#include <stdio.h>
//memcpy函数返回的是目标空间的其实地址
void* my_memcpy(void* dest, const void* src, size_t num)
{
  assert(dest && src);
  void* ret = dest;
  while (num--)
  {
    *(char*)dest = *(char*)src;
    dest = (char*)dest+1;//dest不能直接+-操作,得强转。强转是临时的,所以先强转再赋值回去
    src = (char*)src+1;
  }
  return ret;
}
int main()
{
  int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };
  int arr2[8] = { 0 };
  my_memcpy(arr2, arr1, 20);
  for (int i = 0; i < 8; i++)
  {
    printf("%d ", arr2[i]);
  }
  return 0;
}

运行结果:1 2 3 4 5 0 0 0


7、memmove

头文件:#include <string.h>


作用:与memcpy相似。和memcpy的差别就是memmove函数处理的源内存块和目标内存块是可以重叠的。如果源空间和目标空间出现重叠,就得使用memmove函数处理。


测试:

#include <string.h>
#include <stdio.h>
int main()
{
  int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };
  memmove(arr1+2, arr1, 20);
  for (int i = 0; i < sizeof(arr1)/sizeof(arr1[0]); i++)
  {
    printf("%d ", arr1[i]);
  }
  return 0;
}

运行结果:1 2 1 2 3 4 5 6 7 8 9 10

7.1 memmove的模拟实现

#include <assert.h>
#include <string.h>
#include <stdio.h>
void* my_memmove(void* dest, const void* src, size_t num)
{
  assert(dest && src);
  char* ret = dest;
  //目标在前源头在后,前->后
  if (dest < src)
  {
    while (num--)
    {
      *(char*)dest = *(char*)src;
      dest = (char*)dest + 1;
      src = (char*)src + 1;
    }
  }
  //其他情况,后->前
  else
  {
    while (num--)
    {
      *((char*)dest + num) = *((char*)src + num);
    }
  }
  return ret;
}
int main()
{
  int arr1[] = { 1,2,3,4,5,6,7,8,9,10 };
  my_memmove(arr1+2, arr1, 20);
  for (int i = 0; i < sizeof(arr1)/sizeof(arr1[0]); i++)
  {
    printf("%d ", arr1[i]);
  }
  return 0;
}

运行结果:1 2 1 2 3 4 5 6 7 8 9 10

结论:

memmove可以操作可重叠空间,如果不重叠拷贝内存,就是用memcpy,存在重叠就使用memmove。

相关文章
|
15天前
|
存储 C语言 开发者
【C语言】字符串操作函数详解
这些字符串操作函数在C语言中提供了强大的功能,帮助开发者有效地处理字符串数据。通过对每个函数的详细讲解、示例代码和表格说明,可以更好地理解如何使用这些函数进行各种字符串操作。如果在实际编程中遇到特定的字符串处理需求,可以参考这些函数和示例,灵活运用。
36 10
|
15天前
|
存储 程序员 C语言
【C语言】文件操作函数详解
C语言提供了一组标准库函数来处理文件操作,这些函数定义在 `<stdio.h>` 头文件中。文件操作包括文件的打开、读写、关闭以及文件属性的查询等。以下是常用文件操作函数的详细讲解,包括函数原型、参数说明、返回值说明、示例代码和表格汇总。
36 9
|
15天前
|
存储 Unix Serverless
【C语言】常用函数汇总表
本文总结了C语言中常用的函数,涵盖输入/输出、字符串操作、内存管理、数学运算、时间处理、文件操作及布尔类型等多个方面。每类函数均以表格形式列出其功能和使用示例,便于快速查阅和学习。通过综合示例代码,展示了这些函数的实际应用,帮助读者更好地理解和掌握C语言的基本功能和标准库函数的使用方法。感谢阅读,希望对你有所帮助!
30 8
|
15天前
|
C语言 开发者
【C语言】数学函数详解
在C语言中,数学函数是由标准库 `math.h` 提供的。使用这些函数时,需要包含 `#include <math.h>` 头文件。以下是一些常用的数学函数的详细讲解,包括函数原型、参数说明、返回值说明以及示例代码和表格汇总。
39 6
|
15天前
|
存储 C语言
【C语言】输入/输出函数详解
在C语言中,输入/输出操作是通过标准库函数来实现的。这些函数分为两类:标准输入输出函数和文件输入输出函数。
90 6
|
15天前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
47 6
|
15天前
|
C语言 开发者
【C语言】断言函数 -《深入解析C语言调试利器 !》
断言(assert)是一种调试工具,用于在程序运行时检查某些条件是否成立。如果条件不成立,断言会触发错误,并通常会终止程序的执行。断言有助于在开发和测试阶段捕捉逻辑错误。
23 5
|
23天前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
180 1
|
12天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
21天前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80