减少内存消耗、降低大模型训练成本,ACL杰出论文作者揭秘CAME优化器

简介: 减少内存消耗、降低大模型训练成本,ACL杰出论文作者揭秘CAME优化器

在语言模型的训练中,优化器往往占据了大量的内存使用。然而,随着大语言模型参数量的不断增加,随之而来的是训练时的内存消耗更为严峻。

目前,自适应梯度优化算法,如 Adam 和 LAMB,在大规模语言模型的训练中表现出出色的训练性能。然而,传统优化算法对自适应的需求需要保存每个参数梯度的二阶矩估计,从而导致额外的内存开销。

为了解决这个问题,研究者们提出了一些内存高效的优化器(例如 Adafactor),以大幅减少额外内存的使用,但已有的内存节约优化器通常会牺牲部分训练性能。

在本研究中,来自新加坡国立大学、华为诺亚方舟实验室的研究者首先设计了一种置信度引导策略来降低现有内存节约优化器的训练不稳定性。基于这一策略,他们进一步提出了 CAME 优化器,旨在同时实现两个目标:传统自适应方法的快速收敛和内存高效方法的低内存使用。

大量实验证明了 CAME 在 BERT、GPT-2 等语言模型训练任务中的训练稳定性和出色性能。值得注意的是,在批量大小为 32k 的大批量 BERT 预训练场景下,与 Adam 优化器相比,该研究提出的 CAME 优化器实现了更快的收敛速度和更高的收敛精度,这是对现有内存节约优化器的重要扩展。

为了让大家更好的了解这一研究,机器之心最新一期线上分享邀请到了论文第一作者罗旸,通过本次分享,大家可以更深入的了解这一项研究。



分享主题:CAME 优化器分享:置信度引导的内存节约优化算法

嘉宾简介:罗旸为新加坡国立大学在读硕士生,导师为尤洋教授,HPC-AI 实验室成员。本科毕业于武汉大学,研究兴趣包含机器学习以及高性能计算,当前研究重点为大模型训练的稳定性以及高效训练。

分享摘要:本次分享将首先对大规模语言模型优化算法的相关工作进行概述,随后重点阐述提出的置信度引导策略如何有效解决已有的内存节约优化器中存在的训练不稳定问题,进一步详细介绍基于此策略提出的 CAME 优化器。

相关链接

论文链接:https://arxiv.org/abs/2307.02047

相关文章
|
3月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
138 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
1月前
|
存储 自然语言处理 算法
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
本文探讨了在构建对话系统时如何通过一种内存高效算法降低大语言模型(LLM)的Token消耗和运营成本。传统方法中,随着对话深度增加,Token消耗呈指数级增长,导致成本上升。
122 7
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
|
4月前
|
存储 人工智能 编解码
TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%
TripoSF 是 VAST AI 推出的新一代 3D 基础模型,采用创新的 SparseFlex 表示方法,支持 1024³ 高分辨率建模,内存占用降低 82%,在细节捕捉和复杂结构处理上表现优异。
150 10
TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%
|
10月前
|
程序员 编译器 C++
【C++核心】C++内存分区模型分析
这篇文章详细解释了C++程序执行时内存的四个区域:代码区、全局区、栈区和堆区,以及如何在这些区域中分配和释放内存。
124 2
|
5月前
|
算法 测试技术 Swift
Kimi开源Moonlight-16B-A3B:基于Muon优化器的高效大模型,性能与训练效率双突破!
Kimi开源Moonlight-16B-A3B:基于Muon优化器的高效大模型,性能与训练效率双突破!
|
7月前
|
人工智能 物联网 C语言
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
SVDQuant是由MIT研究团队推出的扩散模型后训练量化技术,通过将模型的权重和激活值量化至4位,显著减少了内存占用并加速了推理过程。该技术引入了高精度的低秩分支来吸收量化过程中的异常值,支持多种架构,并能无缝集成低秩适配器(LoRAs),为资源受限设备上的大型扩散模型部署提供了有效的解决方案。
345 5
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
|
NoSQL Java Redis
Redis系列学习文章分享---第十八篇(Redis原理篇--网络模型,通讯协议,内存回收)
Redis系列学习文章分享---第十八篇(Redis原理篇--网络模型,通讯协议,内存回收)
631 0
|
8月前
|
开发框架 监控 .NET
【Azure App Service】部署在App Service上的.NET应用内存消耗不能超过2GB的情况分析
x64 dotnet runtime is not installed on the app service by default. Since we had the app service running in x64, it was proxying the request to a 32 bit dotnet process which was throwing an OutOfMemoryException with requests >100MB. It worked on the IaaS servers because we had the x64 runtime install
120 5
|
8月前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
9月前
|
机器学习/深度学习 算法 物联网
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
2535 5

热门文章

最新文章