【用于全变分去噪的分裂布雷格曼方法】实施拆分布雷格曼方法进行总变异去噪研究(Matlab代码实现)

简介: 【用于全变分去噪的分裂布雷格曼方法】实施拆分布雷格曼方法进行总变异去噪研究(Matlab代码实现)

💥1 概述

拆分布雷格曼方法(Split Bregman Method)是一种用于全变分去噪的迭代算法。它通过最小化经过全变差正则化的优化问题来实现去噪。以下是实施拆分布雷格曼方法进行全变差去噪的步骤如下:


1. 数据准备:将待去噪的图像表示为二维矩阵或张量形式。如果图像是彩色的,可以将其转换为灰度图像。


2. 定义目标函数:构建优化问题目标函数,将待去噪的图像的全变差作为正则化项。目标函数的形式可能因具体问题而异,但一般形式为最小化损失函数(例如均方差损失)和全变差正则化项之和。


3. 拆分变量:将图像分解为两个变量,通常记为u和v,其中u是去噪后的图像,v是对图像梯度的估计。


4. 迭代求解:使用拆分布雷格曼方法迭代求解优化问题。具体步骤如下:

  a. 固定u,更新v:在保持u不变的情况下,根据当前v的值,通过解决子问题来更新v。这通常涉及到用梯度算子计算图像梯度,并应用软阈值来减少噪声。

  b. 固定v,更新u:在保持v不变的情况下,根据当前u和v的值,通过解决子问题来更新u。这通常涉及到通过最小化目标函数来求解图像u的最优解。

  c. 更新v:更新v的值,将其设置为当前图像u的梯度。

  d. 迭代以上步骤,直到达到收敛条件。


5. 返回结果:在迭代收敛后,得到的最终图像u即为去噪后的结果。


通过拆分布雷格曼方法,可以实现全变差去噪,并获得去噪后的图像。该方法在图像处理和计算机视觉领域得到广泛应用,尤其对于去除噪声并保持图像细节的有效性很好。请注意,具体的算法细节和参数选择可能因具体问题而有所不同。


📚2 运行结果

部分代码:

function u = SB_ATV(g,mu)
% Split Bregman Anisotropic Total Variation Denoising
%
%   u = arg min_u 1/2||u-g||_2^2 + mu*ATV(u)
%   
%   g : noisy image
%   mu: regularisation parameter
%   u : denoised image
%
g = g(:);
n = length(g);
[B Bt BtB] = DiffOper(sqrt(n));
b = zeros(2*n,1);
d = b;
u = g;
err = 1;k = 1;
tol = 1e-3;
lambda = 1;
while err > tol
    fprintf('it. %g ',k);
    up = u;
    [u,~] = cgs(speye(n)+BtB, g-lambda*Bt*(b-d),1e-5,100); 
    Bub = B*u+b;
    d = max(abs(Bub)-mu/lambda,0).*sign(Bub);
    b = Bub-d;
    err = norm(up-u)/norm(u);
    fprintf('err=%g \n',err);
    k = k+1;
end
fprintf('Stopped because norm(up-u)/norm(u) <= tol=%.1e\n',tol);
end
function [B Bt BtB] = DiffOper(N)
D = spdiags([-ones(N,1) ones(N,1)], [0 1], N,N+1);
D(:,1) = [];
D(1,1) = 0;
B = [ kron(speye(N),D) ; kron(D,speye(N)) ];
Bt = B';
BtB = Bt*B;
end


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Goldstein and Osher, The split Bregman method for L1 regularized problems

 SIAM Journal on Imaging Sciences 2(2) 2009

[2]Micchelli et al, Proximity algorithms for image models: denoising

 Inverse Problems 27(4) 2011

[3]李潇瑶,王炼红,周怡聪等.自适应非局部3维全变分彩色图像去噪[J].中国图象图形学报,2022,27(12):3450-3460.


[4]赵鑫春,李碧原,张军.一种改进全变分的图像去噪算法模型[J].计算机辅助工程,2022,31(03):42-48+54.DOI:10.13340/j.cae.2022.03.008.


🌈4 Matlab代码实现

相关文章
|
4月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
4月前
|
计算机视觉
【图像处理】基于灰度矩的亚像素边缘检测方法理论及MATLAB实现
基于灰度矩的亚像素边缘检测方法,包括理论基础和MATLAB实现,通过计算图像的灰度矩来精确定位边缘位置,并提供了详细的MATLAB代码和实验结果图。
123 6
|
4月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
87 0
|
5月前
|
算法 vr&ar
基于自适应波束成形算法的matlab性能仿真,对比SG和RLS两种方法
```markdown - MATLAB2022a中比较SG与RLS自适应波束成形算法。核心程序实现阵列信号处理,强化期望信号,抑制干扰。RLS以其高效计算权重,而SG则以简单和低计算复杂度著称。[12345] [6666666666] [777777] ```
|
6月前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
7月前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
5月前
|
算法 安全 数据挖掘
随机数生成方法及其在Matlab中的应用
随机数生成方法及其在Matlab中的应用
|
7月前
|
算法
MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。
|
7月前
|
数据可视化 算法
MATLAB Simulink 交交变流电路性能研究
MATLAB Simulink 交交变流电路性能研究
88 2
|
7月前
|
数据可视化 算法
MATLAB Simulink 直流斩波电路性能研究
MATLAB Simulink 直流斩波电路性能研究
113 1