基于粒子群优化算法的分布式电源优化调度实现配电网稳定运行(Matlab代码实现)

简介: 基于粒子群优化算法的分布式电源优化调度实现配电网稳定运行(Matlab代码实现)

💥1 概述

随着社会经济的快速发展,化石能源被无节制的开采与使用,能源紧缺以及环境污染问题愈发严重,气候变化加剧,恶劣天气现象频繁发生。为了有效缓解能源和环境问题,新能源技术例如风能、太阳能以及潮汐能等,目前被广泛使用。分布式能源是新能源发展的重要方向,具有清洁、节能环保和高效灵活的特点,并且具有经济性。现如今,分布式电源在配电网中的利用率越来越高,并网后会给配电网的安全运行造成不同程度的影响,故含分布式电源配电网的优化运行问题亟待解决。


📚2 运行结果

部分代码:

% k:初始为0.6(k belongs to [0.1,1.0]),速率和x的关系(V = kX)
% wV:初始为1(wV best belongs to [0.8,1.2]),速率更新公式中速度前面的弹性系数
% wP:初始为1,种群更新公式中速度前面的弹性系数
% v:初始为5,SVM Cross Validation参数
% popcmax:初始为100,SVM 参数c的变化的最大值.
% popcmin:初始为0.1,SVM 参数c的变化的最小值.
% popgmax:初始为1000,SVM 参数g的变化的最大值.
% popgmin:初始为0.01,SVM 参数c的变化的最小值.
Vcmax = pso_option.k*pso_option.popcmax;
Vcmin = -Vcmax ;
Vgmax = pso_option.k*pso_option.popgmax;
Vgmin = -Vgmax ;
eps = 10^(-5);
% train_1 = train(1:100,1);
% train_label1 = train_label(1:100);
% train_2 = train(31:40,1:9);
% train_label2 = train_label(31:40);
%% 产生初始粒子和速度
for i=1:pso_option.sizepop
    % 随机产生种群和速度
    pop(i,1) = (pso_option.popcmax-pso_option.popcmin)*rand+pso_option.popcmin;  
    pop(i,2) = (pso_option.popgmax-pso_option.popgmin)*rand+pso_option.popgmin;
    V(i,1)=Vcmax*rands(1,1);  
    V(i,2)=Vgmax*rands(1,1);
    % 计算初始适应度
    fitness(i)=myfunc_fit1(pop(i,:));
%     [traini1,a1,b1]=svmpredict(train_label1,train_1,model);
%     [traini2,a2,b2]=svmpredict(train_label2,train_2,model);
%     fitness(i)= 0.25*mse(traini1-train_label1) + 0.75*mse(traini2-train_label2);
end
% 找极值和极值点
[global_fitness bestindex]=min(fitness); % 全局极值
local_fitness=fitness;   % 个体极值初始化
global_x=pop(bestindex,:);   % 全局极值点
local_x=pop;    % 个体极值点初始化
% 每一代种群的平均适应度
avgfitness_gen = zeros(1,pso_option.maxgen); 
%% 迭代寻优
for i=1:pso_option.maxgen
    for j=1:pso_option.sizepop
        %速度更新        
        V(j,:) = pso_option.wV*V(j,:) + pso_option.c1*rand*(local_x(j,:) - pop(j,:)) + pso_option.c2*rand*(global_x - pop(j,:));
        if V(j,1) > Vcmax
            V(j,1) = Vcmax;
        end
        if V(j,1) < Vcmin
            V(j,1) = Vcmin;
        end
        if V(j,2) > Vgmax
            V(j,2) = Vgmax;
        end
        if V(j,2) < Vgmin
            V(j,2) = Vgmin;
        end


🌈3 Matlab代码及数据

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]袁玉松. 计及分布式电源的配电网优化运行策略研究[D].湖北民族大学,2020.DOI:10.27764/d.cnki.ghbmz.2020.000148.

相关文章
|
2月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
2月前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
2月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
4月前
|
数据采集 算法
基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真
该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
4月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
131 2
基于Redis的高可用分布式锁——RedLock
|
20天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
53 5
|
23天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
43 8
|
1月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
57 16