【多重信号分类】超分辨率测向方法——依赖于将观测空间分解为噪声子空间和源/信号子空间的方法具有高分辨率(HR)并产生准确的估计(Matlab代码实现)

简介: 【多重信号分类】超分辨率测向方法——依赖于将观测空间分解为噪声子空间和源/信号子空间的方法具有高分辨率(HR)并产生准确的估计(Matlab代码实现)

💥1 概述

MUSIC(多重信号分类)是最早提出的超分辨率测向方法之一,也是一种非常流行的方法。这些依赖于将观测空间分解为噪声子空间和源/信号子空间的方法已被证明具有高分辨率(HR)能力并产生准确的估计。


超分辨率测向方法是一种用于多重信号分类的技术,它通过将观测空间分解为噪声子空间和源/信号子空间的方法来实现高分辨率(HR)并产生准确的估计。以下是对超分辨率测向方法的描述:


1. 数据准备:收集包含多个信号源的观测数据。这些观测数据可以是通过阵列天线收集到的信号。


2. 信号子空间和噪声子空间分解:利用信号处理方法,将观测数据分解为信号子空间和噪声子空间。这通常涉及到计算协方差矩阵或相关矩阵,并通过特征值分解或奇异值分解来获取信号子空间和噪声子空间。


3. 估计信号:在信号子空间中进行信号估计。利用子空间投影方法,对噪声进行抑制,从而使得在高信噪比下可以准确地估计信号的参数,如到达角度、频率等。


4. 超分辨率重建:利用估计的信号参数,对信号进行超分辨率重建。这可以通过插值方法、波束赋形(beamforming)等技术来实现高分辨率。超分辨率重建可以提升信号的空间分辨率,从而更准确地确定信号的来源。


通过以上步骤,超分辨率测向方法可以实现对多重信号的分类和识别。这种方法利用信号和噪声之间的区别,将信号子空间中的信号成分提取出来,并利用这些信号成分重建高分辨率的信号。这样可以提高信号的可分辨性和分类准确性。


📚2 运行结果

可视化代码:

Pmusic = real(10*log10(Pmusic)); %Spatial Spectrum function
[pks,locs] = findpeaks(Pmusic,theta,'SortStr','descend','Annotate','extents');
MUSIC_Estim = sort(locs(1:K))
figure;
plot(theta,Pmusic,'-b',locs(1:K),pks(1:K),'r*'); hold on
text(locs(1:K)+2*sign(locs(1:K)),pks(1:K),num2str(locs(1:K)'))
xlabel('Angle \theta (degree)'); ylabel('Spatial Power Spectrum P(\theta) (dB)') 
title('DOA estimation based on MUSIC algorithm ') 
xlim([min(theta) max(theta)])
grid on


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]陈佳. 基于多重信号分类算法的阵列式图像扫描超分辨显微成像方法研究[D].哈尔滨工业大学,2022.DOI:10.27061/d.cnki.ghgdu.2022.003179.


[2]肖彩妮. 基于多重信号分类算法的超分辨显微成像技术研究[D].哈尔滨工业大学,2021.DOI:10.27061/d.cnki.ghgdu.2021.001858.


[3]于玮. 智能优化多重信号分类的无人机测向技术研究及应用[D].中国石油大学(华东),2020.DOI:10.27644/d.cnki.gsydu.2020.001591.


🌈4 Matlab代码实现

相关文章
|
10天前
|
机器学习/深度学习 传感器 数据采集
MATLAB基于PCA的Indian Pines数据集分类实现
MATLAB基于PCA的Indian Pines数据集分类实现
71 7
|
17天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
107 0
|
17天前
|
机器学习/深度学习 数据采集 算法
【信号识别】识别半监督粗糙模糊拉普拉斯特征图(Matlab代码实现)
【信号识别】识别半监督粗糙模糊拉普拉斯特征图(Matlab代码实现)
|
9天前
|
机器学习/深度学习 边缘计算 运维
【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)
【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)
79 10
|
17天前
|
算法
【电力系统潮流】5节点系统潮流计算-牛拉法和PQ分解法(Matlab代代码实现)
【电力系统潮流】5节点系统潮流计算-牛拉法和PQ分解法(Matlab代代码实现)
156 3
|
17天前
|
机器学习/深度学习 算法 语音技术
【语音分离】通过分析信号的FFT,根据音频使用合适的滤波器进行语音信号分离(Matlab代码实现)
【语音分离】通过分析信号的FFT,根据音频使用合适的滤波器进行语音信号分离(Matlab代码实现)
|
25天前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
|
17天前
|
机器学习/深度学习 存储 算法
基于广义benders分解法的综合能源系统优化规划(Matlab代码实现)
基于广义benders分解法的综合能源系统优化规划(Matlab代码实现)
|
17天前
|
数据格式
表面肌电信号(sEMG)完整处理流程 MATLAB
表面肌电信号(sEMG)完整处理流程 MATLAB
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)

热门文章

最新文章