【模型预测控制MPC】使用离散、连续、线性或非线性模型对预测控制进行建模(Matlab代码实现)

简介: 【模型预测控制MPC】使用离散、连续、线性或非线性模型对预测控制进行建模(Matlab代码实现)

💥1 概述

本文的模型预测控制 (MPC) 可预测和优化未来时间范围内的时变过程。此控制包接受线性或非线性模型。利用APOPT、IPOPT等大规模非线性规划求解器,解决数据调和、移动视界估计、实时优化、动态仿真、非线性MPC问题。


模型预测控制(Model Predictive Control,MPC)是一种基于模型的控制方法,可以用于连续或离散、线性或非线性系统的控制。根据系统的特性,可以选择不同类型的模型进行建模。


1. 离散模型:对于离散时间系统,MPC使用离散时间模型来描述系统的离散演化。常见的离散模型包括离散状态空间模型、差分方程模型或传输函数模型。离散模型可以由系统的采样数据进行辨识得到,或者通过离散化连续时间模型所得到。


2. 连续模型:对于连续时间系统,MPC使用连续时间模型来描述系统的动态行为。常见的连续模型包括连续状态空间模型、微分方程模型或传输函数模型。连续模型通常是根据系统动态方程和物理特性进行建模,并使用系统辨识技术或系统参数估计方法得到。


3. 线性模型:线性模型是MPC中广泛应用的模型类型。这种模型假设系统的动态行为是线性的,其中状态的演化由线性方程描述,输出与输入之间的关系也是线性的。线性模型通常可以通过系统辨识技术(如最小二乘法或系统辨识算法)从实验数据中获得,或者基于已知的系统动态方程推导。


4. 非线性模型:对于非线性系统,MPC可以使用非线性模型进行建模。这种模型可以是非线性状态空间模型、非线性微分方程模型或非线性传输函数模型。非线性模型的建立可能涉及系统辨识技术、参数优化或基于物理知识进行的数学建模。


根据实际应用和系统特点,MPC的模型选择和建模方法可能有所不同。重要的是,在选择合适的模型时考虑系统的特性、计算复杂度和性能要求。此外,模型的有效性需要进行验证和实际应用中的调试和优化。

📚2 运行结果

部分代码:

clear all
close all
% define s
s = tf('s');
% define 2 x 2 control matrix in s-domain (continuous)
G11 = 2/((5*s+1)*(2*s+1))*exp(-6*s);
G12 = -1/((4*s+1)*(2*s+1));
G21 = 2/((4*s+1)*(2*s+1))*exp(-4*s);
G22 = 4/((2*s+1)*(s+1)^3)*exp(-3*s);
% overall transfer function
Gc = [G11 G12;...
      G21 G22];
% get step response
figure(1)
step(Gc)
% convert to discrete form with 1 second sampling (z-domain)
Gd = c2d(Gc,1);
hold on
step(Gd)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]梁天添,王茂.线性时变时滞连续-离散描述系统鲁棒故障诊断滤波器设计[J].中国惯性技术学报,2018,26(06):841-848.DOI:10.13695/j.cnki.12-1222/o3.2018.06.023.


[2]田德,周臣凯,唐世泽等.基于自适应模型预测控制的大型风电机组MPPT方法[J].太阳能学报,2023,44(06):501-508.DOI:10.19912/j.0254-0096.tynxb.2022-0958.


[3]赵玉帅,石沛林,郑辽东等.基于模型预测控制的车辆横向避撞仿真研究[J].山东理工大学学报(自然科学版),2023,37(05):59-67.DOI:10.13367/j.cnki.sdgc.2023.05.008.


🌈4 Matlab代码实现

相关文章
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
91 14
|
9天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 算法
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
|
10天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
10天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
10天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
|
10天前
|
机器学习/深度学习 传感器 边缘计算
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
|
10天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
10天前
|
运维 算法
【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)
【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)

热门文章

最新文章