大语言模型的视觉天赋:GPT也能通过上下文学习解决视觉任务

简介: 大语言模型的视觉天赋:GPT也能通过上下文学习解决视觉任务

LLM 的能力还可以发挥到机器学习的更多子领域。

当前,大型语言模型(LLM)已经掀起自然语言处理(NLP)领域的变革浪潮。我们看到 LLM 具备强大的涌现能力,在复杂的语言理解任务、生成任务乃至推理任务上都表现优异。这启发人们进一步探索 LLM 在机器学习另一子领域 —— 计算机视觉(CV)方面的潜力。

LLM 的一项卓越才能是它们具备上下文学习的能力。上下文学习不会更新 LLM 的任何参数,却在各种 NLP 任务中却展现出了令人惊艳的成果。那么,GPT 能否通过上下文学习解决视觉任务呢?

最近,来自谷歌和卡内基梅隆大学(CMU)的研究者联合发表的一篇论文表明:只要我们能够将图像(或其他非语言模态)转化为 LLM 能够理解的语言,这似乎是可行的。


论文地址:https://arxiv.org/abs/2306.17842

这篇论文揭示了 PaLM 或 GPT 在通过上下文学习解决视觉任务方面的能力,并提出了新方法 SPAE(Semantic Pyramid AutoEncoder)。这种新方法使得 LLM 能够执行图像生成任务,而无需进行任何参数更新。这也是使用上下文学习使得 LLM 生成图像内容的首个成功方法。

我们先来看一下通过上下文学习,LLM 在生成图像内容方面的实验效果。

例如,在给定上下文中,通过提供 50 张手写图像,论文要求 PaLM 2 回答需要生成数字图像作为输出的复杂查询:


还能在有图像上下文输入的情况下生成逼真的现实图像:


除了生成图像,通过上下文学习,PaLM 2 还能进行图像描述:


还有与图像相关问题的视觉问答:


甚至可以去噪生成视频:


方法概述
实际上,将图像转化为 LLM 能够理解的语言,是在视觉 Transformer(ViT)论文中就已经研究过的问题。在 Google 和 CMU 的这篇论文中,他们将其提升到了一个新的层次 —— 使用实际的单词来表示图像。

这种方法就像建造一个充满文字的塔楼,捕捉图像的语义和细节。这种充满文字的表示方法让图像描述可以轻松生成,并让 LLM 可以回答与图像相关的问题,甚至可以重构图像像素。


具体来说,该研究提出使用经过训练的编码器和 CLIP 模型将图像转换为一个 token 空间;然后利用 LLM 生成合适的词法 token;最后使用训练有素的解码器将这些 token 转换回像素空间。这个巧妙的过程将图像转换为 LLM 可以理解的语言,使我们能够利用 LLM 在视觉任务中的生成能力。


实验及结果

该研究将 SPAE 与 SOTA 方法 Frozen 和 LQAE 进行了实验比较,结果如下表 1 所示。SPAEGPT 在所有任务上性能均优于 LQAE,且仅使用 2% 的 token。


总的来说,在 mini-ImageNet 基准上的测试表明,SPAE 方法相比之前的 SOTA 方法提升了 25% 的性能。


为了验证 SPAE 设计方法的有效性,该研究进行了消融实验,实验结果如下表 4 和图 10 所示:



感兴趣的读者可以阅读论文原文,了解更多研究内容。

相关文章
|
7月前
|
机器学习/深度学习
智能体DS-Agent基于案例推理,让GPT-4数据科学任务接近100%
【4月更文挑战第20天】DS-Agent是结合案例推理(CBR)和大型语言模型的新研究,旨在提升自动化数据科学任务效率。通过自动迭代管道,它能理解任务、构建模型并优化性能。在开发阶段,成功率高达100%,部署阶段平均提高36%的一次通过率,降低成本,使开源LLMs也能高效处理数据科学任务。然而,LLMs的生成问题和资源限制仍是挑战。论文链接:https://arxiv.org/pdf/2402.17453.pdf
174 4
|
7月前
|
弹性计算 自然语言处理 Linux
部署GPT-2大语言模型到基于ECS Intel实例的过程可以分为以下步骤
部署GPT-2大语言模型到基于ECS Intel实例的过程可以分为以下步骤
95 3
|
机器学习/深度学习 自然语言处理
【提示学习】GPT Understands, Too
 虽然GPT在传统的预训练微调方面并没有在自然语言理解任务上达到最好的效果, 但是当使用我们提出的P-tuning方法时,便可以与BERT相媲美。P-tuning是一种新的微调方法,其使用可训练的连续空间内的prompt embeddings。在knowledge probing和superGLUE benchmark上得以提升。最重要的是,我们发现P-tuning也可以让BERT在小样本和监督学习上得以提升。且P-tuning可以在superGLUE的小样本任务上达到SOTA。
126 0
|
2月前
|
SQL 数据采集 自然语言处理
NL2SQL之DB-GPT-Hub<详解篇>:text2sql任务的微调框架和基准对比
NL2SQL之DB-GPT-Hub<详解篇>:text2sql任务的微调框架和基准对比
|
5天前
|
人工智能 API Windows
免费部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型(简单5步实现,免费且比GPT4.0更好用)
本文介绍了如何部署本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和Grok-beta大模型。通过获取API密钥、下载并安装Chatbox AI、配置模型,最终实现高效、智能的聊天体验。Grok 2大模型由马斯克X-AI发布,支持超长文本上下文理解,免费且易于使用。
33 0
|
5月前
|
人工智能 知识图谱
LeCun谢赛宁首发全新视觉多模态模型,等效1000张A100干翻GPT-4V
【7月更文挑战第7天】LeCun与谢赛宁团队推出 Cambrian-1,一款视觉多模态大语言模型,挑战GPT-4V。该模型以视觉为中心,利用20多种视觉编码器强化表示学习,实现SOTA性能,同时开源权重、代码及工具,促进领域发展。尽管面临资源需求与数据隐私的讨论,但其创新如空间视觉聚合器(SVA)降低了计算需求。[论文链接: https://arxiv.org/abs/2406.16860]
73 1
|
4月前
|
自然语言处理 测试技术 计算机视觉
ECCV 2024:提升GPT-4V、Gemini检测任务性能,你需要这种提示范式
【8月更文挑战第14天】在2024年ECCV上,一篇论文介绍了DetToolChain——一种创新提示范式,旨在提升GPT-4V等多模态大型语言模型在检测任务上的表现。它利用精心设计的视觉提示引导模型关注图像的关键区域,并通过Chain-of-Thought方法将复杂任务分解为简单步骤,显著提高了零样本目标检测的准确性。实验显示,在多个基准测试上,DetToolChain带来了高达24.23%的性能提升。然而,这种方法可能需要大量计算资源,并且在不同任务和数据集上的效果仍有待验证。
191 66
|
2月前
|
机器学习/深度学习 人工智能 算法
【大语言模型-论文速读】GPT的不确定性判断
【大语言模型-论文速读】GPT的不确定性判断
49 0
|
3月前
|
编解码 定位技术 计算机视觉
多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
【9月更文挑战第2天】浙江大学领衔的研究团队针对多模态大型模型(MLLM)在抽象图像理解和视觉推理上的不足,提出了一种利用GPT-4合成数据构建多模态基准的方法。该研究通过合成数据提高了MLLM处理图表、文档等复杂图像的能力,并构建了一个包含11,193条指令的基准,涵盖8种视觉场景。实验表明,这种方法能显著提升模型性能,但依赖闭源模型和高计算成本是其局限。论文详细内容见:https://arxiv.org/pdf/2407.07053
90 10
|
7月前
|
人工智能 自然语言处理 Linux

热门文章

最新文章

下一篇
DataWorks