GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群

简介: GPT-4使用混合大模型?研究证明MoE+指令调优确实让大模型性能超群

谷歌、UC 伯克利等证明 MoE + 指令调优起到了 1 + 1 > 2 的效果。


自 GPT-4 问世以来,人们一直惊艳于它强大的涌现能力,包括出色的语言理解能力、生成能力、逻辑推理能力等等。这些能力让 GPT-4 成为机器学习领域最前沿的模型之一。然而,OpenAI 至今未公开 GPT-4 的任何技术细节。

上个月,「天才黑客」乔治・霍兹(George Hotz)在接受一家名为 Latent Space 的 AI 技术播客的采访时提到了 GPT-4,并称 GPT-4 其实是一个混合模型。具体来说,乔治・霍兹称 GPT-4 采用由 8 个专家模型组成的集成系统,每个专家模型都有 2200 亿个参数(比 GPT-3 的 1750 亿参数量略多一些),并且这些模型经过了针对不同数据和任务分布的训练。

Latent Space 的采访内容。

这或许只是乔治・霍兹的一种推测,但这种模式确实有一定的合理性。最近,由来自谷歌、UC 伯克利、MIT 等机构的研究者联合发表的一篇论文证实:混合专家模型(MoE)与指令调优的结合能够让大型语言模型(LLM)的性能大幅提升。


论文地址:https://arxiv.org/pdf/2305.14705.pdf

稀疏混合专家模型是一种特殊的神经网络架构,可以在不增加推理成本的情况下,为大型语言模型(LLM)增加可学习的参数。指令调优(instruction tuning)是一种训练 LLM 遵循指令的技术。该研究发现 MoE 模型比密集模型更能从指令调优中获益,因此提出将 MoE 和指令调优结合起来。

该研究在三种实验设置下进行了实证研究,包括

  • 在没有指令调优的情况下在单个下游任务进行直接微调;
  • 指令调优后对下游任务进行 in-context 少样本或零样本泛化;
  • 指令调优后对单个下游任务进行进一步微调。


在第一种情况下,MoE 模型总体上不如具有相同计算能力的密集模型。然而,随着指令调优的引入(第二和第三种情况),FLAN-MoE_32B(Fine-tuned LAnguage Net,简写为 Flan,是一种经过指令调优的模型,Flan-MoE 即为指令调优 MoE)在四个基准任务上性能超过了 FLAN-PALM_62B,却只用了三分之一的 FLOPs。

如下图所示,在使用指令调优前,MoE→FT 不如 T5→FT。指令调优后,Flan-MoE→FT 优于 Flan-T5→FT。MoE 从指令调优中获得的收益 (+15.6) 大于密集模型 (+10.2):


看来 GPT-4 采用混合模型还是有点根据的,MoE 确实能够从指令调优中获得更大的收益:


方法概述

研究者在 FLAN-MOE (是一组经过指令微调的稀疏混合专家模型)模型中使用了稀疏激活 MoE(Mixture-of-Experts)。此外,他们还用 MoE 层替换了其他 Transformer 层的前馈组件。

每个 MoE 层可理解为一个「专家」,然后,使用 softmax 激活函数对这些专家进行建模,得到一个概率分布。

尽管每个 MoE 层有很多参数,但专家是稀疏激活的。这意味着对于给定的输入 token,只使用有限的专家子集就能完成任务,从而为模型提供了更大的容量。

对于具有 E 个专家的 MoE 层,这实际上提供了 O (E^2) 种不同的前馈网络组合,从而实现了更大的计算灵活性。

由于 FLAN-MoE 是经过指令调优的模型,因而指令调优非常重要,该研究在 FLAN 集合数据集的基础上对 FLAN-MOE 进行微调。此外,该研究将每个 FLAN-MOE 的输入序列长度调整为 2048,输出长度调整为 512。

实验与分析

平均而言,在不增加任何额外计算的情况下,Flan-MoE 在所有模型尺度上都优于密集的同类产品 (Flan-T5)。


专家数量。图 4 显示,随着专家数量的增加,初始时,模型受益于更丰富的专门子网络,每个子网络能够处理问题空间中的不同任务或方面。这种方式使得 MoE 在处理复杂任务时具有很强的适应性和效率,从而整体上改善性能。然而,随着专家数量的不断增加,模型性能增益开始减少,最终达到饱和点。


图 3 和表 1 详细研究了不同的路由决策如何影响指令调优性能:通过 FLAN-Switch 和 FLAN-GS 策略之间的比较可以得出,激活更多的专家会在四个基准测试中提高性能。在这些基准测试中,MMLU-Direct 模型显示出最显著的改进,对于 BASE/LARGE 尺寸的模型,从 38.0% 增加到 39.9%。

值得注意的是,与等效容量的密集模型相比,指令调优显著放大了 MoE 模型在保留 MMLU、BBH 和内部 QA 和推理基准测试方面的性能。对于较大的 MoE 模型,这些优势进一步放大。例如,指令调优使 ST_32B 的性能提升了 45.2%,而对于 FLAN-PALM_62B,这种改进相对较小,约为 6.6%。


当进行模型扩展时,Flan-MoE (Flan-ST-32B) 优于 Flan-PaLM-62B 。


此外,该研究通过 freeze 给定模型的门控函数(gating function)、专家模块和 MoE 参数进行了一些分析实验。如下表 2 所示,实验结果表明,freeze 专家模块或 MoE 组件对模型性能有负面影响。


相反,freeze 门控函数会使模型性能略有改善,尽管并不明显。研究者推测这一观察结果与 FLAN-MOE 的欠拟合有关。该研究还进行了消融实验来探究下图 5 描述了微调数据效率消融研究。


最后,为了比较直接对 MoE 进行微调和 FLAN-MOE 之间的差距,该研究对单任务微调的 MoE、单任务微调的 FLAN-MoE 和密集模型进行了实验,结果如下图 6 所示:


感兴趣的读者可以阅读论文原文,了解更多研究内容。

相关文章
|
2月前
|
数据采集 机器学习/深度学习 编解码
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
332 0
小红书 hi lab开源最强多模态大模型dots.vlm1,性能对标闭源 Gemini 2.5 Pro 和 Seed-VL1.5
|
3月前
|
机器学习/深度学习 人工智能 测试技术
【ICML2025】大模型后训练性能4倍提升!阿里云PAI团队研究成果ChunkFlow中选
近日,阿里云 PAI 团队、通义实验室与中国科学院大学前沿交叉科学学院合作在机器学习顶级会议 ICML 2025 上发表论文 Efficient Long Context Fine-tuning with Chunk Flow。ChunkFlow 作为阿里云在变长和超长序列数据集上高效训练解决方案,针对处理变长和超长序列数据的性能问题,提出了以 Chunk 为中心的训练机制,支撑 Qwen 全系列模型的长序列续训练和微调任务,在阿里云内部的大量的业务上带来2倍以上的端到端性能收益,大大降低了训练消耗的 GPU 卡时。
|
3月前
|
存储 资源调度 并行计算
# Qwen3-8B 与 Qwen3-14B 的 TTFT 性能对比与底层原理详解
通义千问Qwen3系列是通义实验室2025年推出的最新大模型,包含多种参数版本,其中Qwen3-8B与Qwen3-14B均支持32K token上下文。Qwen3-8B参数量较小,响应更快,适合低延迟交互;Qwen3-14B参数更多,推理更强,适用于复杂任务。两者在TTFT、架构优化、量化技术及部署方案上各有侧重,满足多样应用场景需求。
1417 9
|
13天前
|
人工智能 缓存 自然语言处理
阿里云百炼大模型收费价格:调用、调优和部署费用清单
阿里云百炼开通免费,调用、调优、部署按需计费。每个模型享100万Tokens免费额度,超量后计费。含推理(按Token阶梯计价)、训练(按数据量)和部署(按时长或调用量)三项费用,详情见官方文档。
347 3
|
6月前
|
数据采集 人工智能 运维
医疗大模型落地方案:技术选型、部署策略与调优
医疗大模型正推动医疗行业数字化转型,其落地涉及技术选型、部署策略和调优方案。技术选型需根据需求选择适合的模型类型与架构;部署策略包括本地化、私有云及混合模式,注重数据安全与系统集成;调优方案从数据、模型到应用层面全面优化性能。通过多学科协作与持续改进,医疗大模型可更好地融入临床工作流,提升医疗效率与质量。
463 5
医疗大模型落地方案:技术选型、部署策略与调优
|
22天前
|
人工智能 数据可视化 前端开发
AI Ping:精准可靠的大模型服务性能评测平台
AI Ping是清华系团队推出的“大模型服务评测平台”,被誉为“AI界的大众点评”。汇聚230+模型服务,7×24小时监测性能数据,以吞吐量、延迟等硬指标助力开发者科学选型。界面简洁,数据可视化强,支持多模型对比,横向对标国内外主流平台,为AI应用落地提供权威参考。
212 3
|
7月前
|
人工智能 Prometheus 监控
监控vLLM等大模型推理性能
本文将深入探讨 AI 推理应用的可观测方案,并基于 Prometheus 规范提供一套完整的指标观测方案,帮助开发者构建稳定、高效的推理应用。
1071 169
监控vLLM等大模型推理性能
|
3月前
|
存储 缓存 资源调度
# Qwen3-8B 与 ChatGPT-4o Mini 的 TTFT 性能对比与底层原理详解
Qwen3-8B 是通义实验室推出的80亿参数模型,支持32K上下文,采用FP8量化和CUDA优化,提升推理效率;ChatGPT-4o Mini 为OpenAI轻量模型,参数约3.8B,支持128K上下文,通过蒸馏技术实现低延迟。两者在TTFT、长文本处理和部署优化上各有优势,适用于不同应用场景。
386 8
|
3月前
|
机器学习/深度学习 人工智能 算法
通义WebSailor开源,检索性能登顶开源榜单!
通义开源网络智能体WebSailor具备强大推理与检索能力,在复杂场景下表现优异,已登顶开源网络智能体榜单。其创新训练方法大幅提升了模型性能,适用于多领域复杂任务。
580 0
通义WebSailor开源,检索性能登顶开源榜单!

热门文章

最新文章