云环境中使用飞蛾火焰和萨尔普群算法组合的工作流调度(Matlab代码实现)

简介: 云环境中使用飞蛾火焰和萨尔普群算法组合的工作流调度(Matlab代码实现)

💥1 概述

本文介绍了云环境中的工作流调度,并研究了具有不同数量异构虚拟机(VM)的不同服务器。为此,该文提出一种结合蛾焰优化(MFO)和Salp Swarm算法(SSA)的多目标工作流调度方法,提出一种具有不同目标(制造时间、吞吐量、资源利用率和可靠性)的MFSSA方法。MFSSA算法的主要目标是根据目标函数的最小化找到最优的服务器和虚拟机,从而为每个工作流任务获得最佳虚拟机。


📚2 运行结果

部分代码:

%Define problem parameters
search_agents_number=50; % Number of search agents
maxLoop=100; % Maximum numbef of iterations
%-------------------------------------------------------------------------%
% MIPS (Millions of Instructions Per Second)
% Expect Complete Time (ECT) 
% A cloud server(Node) can execute several separate VM samples, and each VM sample includes various resources such as CPU and memory
% the CPU (cpu_i (t)) and memory (mem_i (t))) usage of the cloud server are between [0, 100], i.e.  0鈮pu_i (t), mem_i (t)鈮�100
% ECT (k,j) represents the expected time of execution of task T(k,1) on vm(:, j)
Node1=randi([0 100],2,3);%vm1, vm2, vm3----> each vm incloud 2 feature(cpu capacity(mips), memory)...0鈮pu_i (t), mem_i (t)鈮�100
Node2=randi([0 100],2,4);%vm1, vm2, vm3, vm4----> each vm incloud 2 feature(cpu capacity(mips), memory)...0鈮pu_i (t), mem_i (t)鈮�100
Node3=randi([0 100],2,5);%vm1, vm2, vm3, vm4, vm5----> each vm incloud 2 feature(cpu capacity(mips), memory)...0鈮pu_i (t), mem_i (t)鈮�100
Node4=randi([0 100],2,6);%vm1, vm2, vm3, vm4, vm5, vm6, vm7----> each vm incloud 2 feature(cpu capacity(mips), memory)...0鈮pu_i (t), mem_i (t)鈮�100
Node5=randi([0 100],2,8);
Node6=randi([0 100],2,10);
Node7=randi([0 100],2,9);
Node8=randi([0 100],2,12);
%-------------------------------------------------------------------------%
failure_Rate1 = [9e-5, 7e-5, 8e-5, 6e-5, 5e-5, 6e-5]; %failure_Rate of each processor(deadline failure rate of the tasks at time t)
num_core = [15, 10, 15, 20, 25, 20]; %number of cores
for jj=1:size(Node1, 2)
    s=randi(size(failure_Rate1, 2));
    Node1(3, jj)=failure_Rate1(1, s);
    Node1(4, jj)=num_core(1, s);%number of cores
    Node1(5, jj)=num_core(1, s)*Node1(2, jj);% capacity of the VM instance
end
for jj=1:size(Node2, 2)
    s=randi(size(failure_Rate1, 2));
    Node2(3, jj)=failure_Rate1(1, s);
    Node2(4, jj)=num_core(1, s);
    Node2(5, jj)=num_core(1, s)*Node2(2, jj);% capacity of the VM instance
end
for jj=1:size(Node3, 2)
    s=randi(size(failure_Rate1, 2));
    Node3(3, jj)=failure_Rate1(1, s);
    Node3(4, jj)=num_core(1, s);
    Node3(5, jj)=num_core(1, s)*Node3(2, jj);% capacity of the VM instance
end
for jj=1:size(Node4, 2)
    s=randi(size(failure_Rate1, 2));
    Node4(3, jj)=failure_Rate1(1, s);
    Node4(4, jj)=num_core(1, s);
    Node4(5, jj)=num_core(1, s)*Node4(2, jj);% capacity of the VM instance
end
for jj=1:size(Node5, 2)
    s=randi(size(failure_Rate1, 2));
    Node5(3, jj)=failure_Rate1(1, s);
    Node5(4, jj)=num_core(1, s);
    Node5(5, jj)=num_core(1, s)*Node5(2, jj);% capacity of the VM instance
end
for jj=1:size(Node6, 2)
    s=randi(size(failure_Rate1, 2));
    Node6(3, jj)=failure_Rate1(1, s);
    Node6(4, jj)=num_core(1, s);
    Node6(5, jj)=num_core(1, s)*Node6(2, jj);% capacity of the VM instance
end
for jj=1:size(Node7, 2)
    s=randi(size(failure_Rate1, 2));
    Node7(3, jj)=failure_Rate1(1, s);
    Node7(4, jj)=num_core(1, s);
    Node7(5, jj)=num_core(1, s)*Node7(2, jj);% capacity of the VM instance
end
for jj=1:size(Node8, 2)
    s=randi(size(failure_Rate1, 2));
    Node8(3, jj)=failure_Rate1(1, s);
    Node8(4, jj)=num_core(1, s);
    Node8(5, jj)=num_core(1, s)*Node8(2, jj);% capacity of the VM instance
end
% save vm_info.mat Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8;
%=========================================================================%
total_Node={Node1, Node2, Node3, Node4, Node5, Node6, Node7, Node8};
%=========================================================================%
total_vm=zeros(size(Node1, 1), size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+size(Node7, 2)+size(Node8, 2));
total_vm(:, 1:size(Node1, 2))=Node1(:, :);
total_vm(:, size(Node1, 2)+1:size(Node1, 2)+size(Node2, 2))=Node2(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2))=Node3(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2))=Node4(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2))=Node5(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2))=Node6(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+size(Node7, 2))=Node7(:, :);
total_vm(:, size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+size(Node7, 2)+1:size(Node1, 2)+size(Node2, 2)+size(Node3, 2)+size(Node4, 2)+size(Node5, 2)+size(Node6, 2)+size(Node7, 2)+size(Node8, 2))=Node8(:, :);
%=========================================================================%
% DAG
job_uses=row(:, 22); %task size
child_ref=text(:, 23);
child_parent=text(:, 24);
% child_parent1=child_parent;
% child_ref1=child_ref;
% index1 = find(contains(child_parent, 'ID00000'));
% index2 = find(contains(child_ref, 'ID00000'));
for jj=2:size(child_parent, 1)
    job_uses1(jj, 1)=cell2mat(job_uses(jj, 1));
end
B1=unique(child_parent);% hazf anasor tekrari
B2=unique(child_ref);
ff=zeros(size(B1, 1), size(B1, 1));
for k1=2:size(B1, 1)-1
    for k2=2:size(B2, 1)-1
    aa = find(contains(child_parent, B1(k1)));
    for i3=1:size(aa, 1)
        m1=child_ref(aa(i3, 1), 1);
        bb = find(contains(B2, m1));
        m2=child_parent(aa(i3, 1), 1);
        h1=strcmp(m1, m2);
        if h1==1
           ff(k1-1, bb)=-1;
        else
           ff(k1-1, bb)=job_uses1(aa(i3, 1), 1);
        end
    end
end
end
fff=ff;
for i=1:size(fff, 1)
    for j=1:size(fff, 2)
        if fff(i, j)==0
        fff(i, j)=-1;
        end
    end
end
fff=fff(1:size(fff, 1)-2, 2:size(fff, 2)-1);
%=========================================================================%
taskNum = size(B1, 1)-2; % 
% taskNum = size(fff, 1); % 
nvar = taskNum;
% nvar=size(DataSet, 1);    % number of tasks for scheduling.
nvms=size(total_vm, 2);  % number of virtual machine.
dim=nvar;
xmin=1;
xmax=nvms;
lowerBound=xmin;
upperBound=xmax;
%=========================================================================%
% ECT=zeros(nvar,nvms);
% for i1=1:nvar
%     for j1=1:nvms
%         ECT(i1, j1)=DataSet(i1,:)./total_vm(1, j1);
%     end
% end
%=========================================================================% 
DAG = FunctionClass; %produce the structure
DAG.E=fff;%Communication cost between Ti and Tj/set of those task dependencies
DAG.arrivalTime = 0;
%=========================================================================%
% for workflow with 6 tasks
taskNum = 6;
DAG.Wcet = randi([1 100],size(total_vm, 2), taskNum+1);%Computation cost of Ti on pj/the task execution time matrix
DAG.E = [-1 20 24 -1 -1 -1;-1 -1 -1 12 -1 -1;-1 -1 -1 -1 43 -1;-1 -1 -1 -1 -1 70;-1 -1 -1 -1 -1 93;-1 -1 -1 -1 -1 -1];  
%=========================================================================%
energy_Spec =abs(rand(size(total_vm, 2), taskNum));%(NUM Of PROCESSOR)x(num task)
%=========================================================================%
%MFO_SSA
%avg 30 runs
% for i=1:30% 30 Runs
[Resourse_utilization_MFSSA, Throughput_MFSSA, Reliability_MFSSA, Fitnes_value_MFSSA, MakeSpanMax_MFSSA, index_server_MFSSA, pos_best_MFSSA, Leader_pos_MFSSA] = forLoopFuc_MFSSA(taskNum, DAG, energy_Spec, search_agents_number, maxLoop, Node1, Node2, Node3, Node4, Node5, Node6, Node7, Node8, total_vm, nvar, dim, lowerBound,upperBound);
% end
%=========================================================================%
fprintf('1-Resourse_utilization_MFSSA is %f\n', Resourse_utilization_MFSSA);
fprintf('1-Throughput_MFSSA is %f\n', Throughput_MFSSA);%
fprintf('1-Reliability_MFSSA is %f\n', Reliability_MFSSA);%
fprintf('1-MakeSpanMax_MFSSA is %f\n', MakeSpanMax_MFSSA);%
fprintf('1-Fitnes_value_MFSSA is %f\n', Fitnes_value_MFSSA);
%========================================================================


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Taybeh Salehnia, Saeed Naderi, Seyedali Mirjalili, Mahmood Ahmadi (2023) A workflow scheduling in cloud environment using a combination of Moth-Flame and Salp Swarm algorithms


🌈4 Matlab代码实现

相关文章
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。

热门文章

最新文章