【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)

简介: 【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)

💥1 概述

本文使用SOMA和小波收缩来对图像进行去噪。选择传统的去噪方法需要事先了解破坏图像的噪声类型。此外,使用通用小波收缩进行图像去噪仅适用于被高斯噪声破坏的图像。

在此文中,我们使用 SOMA 查找小波收缩去噪的参数,例如选择小波和各种级别的阈值。我们的算法适用于破坏图像的各种噪声,如高斯,盐和胡椒等。


自组织迁移算法(Self-Organizing Migration Algorithm,简称SOMA)是一种基于进化算法的优化方法,被应用于图像去噪领域。图像去噪是一项重要的图像处理任务,旨在从包含噪声的图像中恢复出尽可能接近原始图像的清晰图像。


SOMA是基于群体智能的优化算法,受到生物进化和群体行为的启发。它通过构建一个代表潜在解空间的种群,并模拟物种迁移和竞争,逐步优化解空间中的每个个体,从而搜索到最佳的去噪结果。


在基于SOMA的图像去噪研究中,首先需要构建一个种群,其中每个个体代表一种可能的去噪方案。个体可以用一些参数来描述,例如滤波器的类型、尺寸和参数设置等。然后,通过评估每个个体的适应度函数来衡量其去噪效果,可以使用像峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标。


接下来,使用遗传算子(如交叉和变异)对种群进行进化操作,以生成新的个体。在进化过程中,适应度较高的个体将更有可能被选择和保留,从而逐渐改善整个种群的去噪能力。这个迭代过程将继续进行一定的代数或直到达到停止准则为止。


通过SOMA算法的迭代优化过程,最终可以得到一个或多个较优的去噪方案,选择其中的一个作为最终的去噪结果。这些方案能够减小图像中的噪声,并保持图像的细节和质量。


需要指出的是,基于SOMA的图像去噪研究是一个复杂的过程,涉及到参数的选择、适应度函数的设计以及算法的终止准则等方面。因此,在实际应用中,需要根据具体情况进行合理的设置和调整,以获得令人满意的去噪效果。


📚2 运行结果

主函数代码:


clc;
clear all;
close all;
%Read image and add noise
img = (im2double((imread('lena512.bmp'))));
imn = imnoise(img,'salt & pepper',0.05);
%Perform Denoising using SOMA
parameters = Run_SOMA(imn,img)
denoised_image = output_file(imn,parameters(1),parameters(2),parameters(3),parameters(4),round(parameters(5)),round(parameters(6)));
%Perform Denoising using Universal Thresholing (inbuilt MATLAB function)
[THR,SORH,KEEPAPP] = ddencmp('den','wv',imn);
dn1 = wdencmp('gbl',imn,'db4',2,THR,SORH,KEEPAPP);
%PSNR
psnr_org = PSNR(img,imn);
psnr_mat = PSNR(img,dn1);
psnr_denoise = PSNR(img,denoised_image);
%SSIM
ssim_org = ssim(img,imn);
ssim_mat = ssim(img,dn1);
ssim_denoise = ssim(img,denoised_image);
disp('PSNR Values')
disp('For Original Noisy image')
disp(psnr_org)
disp('For Universal Thresholding')
disp(psnr_mat)
disp('For SOMA')
disp(psnr_denoise)
disp('SSIM Values')
disp('For Original Noisy image')
disp(ssim_org)
disp('For Universal Thresholding')
disp(ssim_mat)
disp('For SOMA')
disp(ssim_denoise)
subplot(1,3,1)
imshow(imn)
title('Noisy image');
subplot(1,3,2)
imshow(dn1);
title('Denoised Image using Universal Thresholding')
subplot(1,3,3)
imshow(denoised_image)
title('Denoised Image using SOMA')


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Anupriya, Akash tayal, “Wavelet based Image Denoising using Self Organizing Migration Algorithm”,CiiT International Journal of Digital Image Processing, June 2012


🌈4 Matlab代码实现

相关文章
|
8天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
20天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
20 3
|
18天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
1月前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。
|
24天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
17 0
|
1月前
|
算法 Java 测试技术
数据结构 —— Java自定义代码实现顺序表,包含测试用例以及ArrayList的使用以及相关算法题
文章详细介绍了如何用Java自定义实现一个顺序表类,包括插入、删除、获取数据元素、求数据个数等功能,并对顺序表进行了测试,最后还提及了Java中自带的顺序表实现类ArrayList。
21 0
|
2月前
|
机器学习/深度学习 存储 算法
经典算法代码
这段代码展示了多个经典算法,包括:穷举法解决“百钱买百鸡”问题;递推法计算“猴子吃桃”问题;迭代法求解斐波那契数列及折纸高度超越珠峰的问题。同时,还提供了希尔排序算法实现及披萨票务订购系统和汉诺塔问题的链表存储解决方案。每部分通过具体案例解释了算法的应用场景与实现方法。
31 3
|
3月前
|
人工智能 算法 数据可视化
DBSCAN密度聚类算法(理论+图解+python代码)
DBSCAN密度聚类算法(理论+图解+python代码)
|
3月前
|
数据采集 搜索推荐 算法
【高手进阶】Java排序算法:从零到精通——揭秘冒泡、快速、归并排序的原理与实战应用,让你的代码效率飙升!
【8月更文挑战第21天】Java排序算法是编程基础的重要部分,在算法设计与分析及实际开发中不可或缺。本文介绍内部排序算法,包括简单的冒泡排序及其逐步优化至高效的快速排序和稳定的归并排序,并提供了每种算法的Java实现示例。此外,还探讨了排序算法在电子商务、搜索引擎和数据分析等领域的广泛应用,帮助读者更好地理解和应用这些算法。
42 0

热门文章

最新文章