【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)

简介: 【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)

💥1 概述

本文使用SOMA和小波收缩来对图像进行去噪。选择传统的去噪方法需要事先了解破坏图像的噪声类型。此外,使用通用小波收缩进行图像去噪仅适用于被高斯噪声破坏的图像。

在此文中,我们使用 SOMA 查找小波收缩去噪的参数,例如选择小波和各种级别的阈值。我们的算法适用于破坏图像的各种噪声,如高斯,盐和胡椒等。


自组织迁移算法(Self-Organizing Migration Algorithm,简称SOMA)是一种基于进化算法的优化方法,被应用于图像去噪领域。图像去噪是一项重要的图像处理任务,旨在从包含噪声的图像中恢复出尽可能接近原始图像的清晰图像。


SOMA是基于群体智能的优化算法,受到生物进化和群体行为的启发。它通过构建一个代表潜在解空间的种群,并模拟物种迁移和竞争,逐步优化解空间中的每个个体,从而搜索到最佳的去噪结果。


在基于SOMA的图像去噪研究中,首先需要构建一个种群,其中每个个体代表一种可能的去噪方案。个体可以用一些参数来描述,例如滤波器的类型、尺寸和参数设置等。然后,通过评估每个个体的适应度函数来衡量其去噪效果,可以使用像峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标。


接下来,使用遗传算子(如交叉和变异)对种群进行进化操作,以生成新的个体。在进化过程中,适应度较高的个体将更有可能被选择和保留,从而逐渐改善整个种群的去噪能力。这个迭代过程将继续进行一定的代数或直到达到停止准则为止。


通过SOMA算法的迭代优化过程,最终可以得到一个或多个较优的去噪方案,选择其中的一个作为最终的去噪结果。这些方案能够减小图像中的噪声,并保持图像的细节和质量。


需要指出的是,基于SOMA的图像去噪研究是一个复杂的过程,涉及到参数的选择、适应度函数的设计以及算法的终止准则等方面。因此,在实际应用中,需要根据具体情况进行合理的设置和调整,以获得令人满意的去噪效果。


📚2 运行结果

主函数代码:


clc;
clear all;
close all;
%Read image and add noise
img = (im2double((imread('lena512.bmp'))));
imn = imnoise(img,'salt & pepper',0.05);
%Perform Denoising using SOMA
parameters = Run_SOMA(imn,img)
denoised_image = output_file(imn,parameters(1),parameters(2),parameters(3),parameters(4),round(parameters(5)),round(parameters(6)));
%Perform Denoising using Universal Thresholing (inbuilt MATLAB function)
[THR,SORH,KEEPAPP] = ddencmp('den','wv',imn);
dn1 = wdencmp('gbl',imn,'db4',2,THR,SORH,KEEPAPP);
%PSNR
psnr_org = PSNR(img,imn);
psnr_mat = PSNR(img,dn1);
psnr_denoise = PSNR(img,denoised_image);
%SSIM
ssim_org = ssim(img,imn);
ssim_mat = ssim(img,dn1);
ssim_denoise = ssim(img,denoised_image);
disp('PSNR Values')
disp('For Original Noisy image')
disp(psnr_org)
disp('For Universal Thresholding')
disp(psnr_mat)
disp('For SOMA')
disp(psnr_denoise)
disp('SSIM Values')
disp('For Original Noisy image')
disp(ssim_org)
disp('For Universal Thresholding')
disp(ssim_mat)
disp('For SOMA')
disp(ssim_denoise)
subplot(1,3,1)
imshow(imn)
title('Noisy image');
subplot(1,3,2)
imshow(dn1);
title('Denoised Image using Universal Thresholding')
subplot(1,3,3)
imshow(denoised_image)
title('Denoised Image using SOMA')


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Anupriya, Akash tayal, “Wavelet based Image Denoising using Self Organizing Migration Algorithm”,CiiT International Journal of Digital Image Processing, June 2012


🌈4 Matlab代码实现

相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
21天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
7天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
23天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
1天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
22天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。

热门文章

最新文章