【使用时空RBF-NN进行非线性系统识别】实现了 RBF、分数 RBF 和时空 RBF 神经网络,用于非线性系统识别研究(Matlab代码实现)

简介: 【使用时空RBF-NN进行非线性系统识别】实现了 RBF、分数 RBF 和时空 RBF 神经网络,用于非线性系统识别研究(Matlab代码实现)

💥1 概述

本文用于非线性系统识别任务的径向基函数神经网络(RBF-NN)的三种变体。特别是,我实现了具有常规和分数梯度下降的RBF,并将性能与时空RBF-NN进行了比较。


时空RBF-NN(Radial Basis Function Neural Network)是一种用于非线性系统识别的方法,它将RBF神经网络与时空数据建模相结合。由于非线性系统的行为通常涉及时空关系,时空RBF-NN能够更好地捕捉系统动态,并用于模型识别和预测。


实现时空RBF-NN进行非线性系统识别的基本步骤如下:


1. 数据采集:收集非线性系统的时空数据,包括系统的输入和输出。这些数据用于构建和训练时空RBF-NN模型。


2. RBF神经网络:构建RBF神经网络作为时空RBF-NN的基本模块。RBF神经网络使用径向基函数作为其激活函数,可以通过调整基函数的参数来适应不同的数据模式和非线性关系。


3. 分数RBF:对于具有长期记忆依赖关系的系统,可以考虑使用分数RBF。分数RBF可以捕捉到时间序列中的长期依赖现象,从而提高系统的建模和预测能力。


4. 时空数据建模:将时空数据建模为时空RBF-NN模型。在模型中,输入向量包含过去时刻的输入值和输出值,以捕获系统的历史信息。输出向量则是当前时刻的输出值。


5. 模型训练:使用收集到的时空数据对时空RBF-NN模型进行训练。通过调整模型的参数和基函数的参数,使模型能够更好地拟合和预测系统的动态特性。


6. 模型评估与预测:对训练好的时空RBF-NN模型进行评估。使用测试数据对模型进行验证,并分析模型的预测性能和适应性。


通过实现RBF、分数RBF和时空RBF神经网络,并应用于非线性系统识别研究,可以更好地理解和预测复杂系统的行为。然而,具体的实现细节和参数设置可能因系统的特点和研究目的而有所不同,需要根据具体情况进行调整和优化。


📚2 运行结果

2.1 算例1

2.2 算例2

部分代码:


meu_c = 1e-2;% Step size
meu_st = 1e-2;% Step size
meu_f = 1e-2;% Step size
len = 1000; % Length of the signal 
runs = 500; % Number of times signal passes through ADF for weight adaptation
x=[ones(1,round(len/4)) -ones(1,round(len/4)) ones(1,round(len/4)) -ones(1,round(len/4))];
x=awgn(x,10);
%% Defining Unknown System
h = [2 -0.5 -0.1 -0.7 3];
c = [-5:2:5];
n1=length(c);
W_c = randn(1,n1); % Weights
W_f = randn(1,n1); % Weights
W_st = randn(3,n1); % Weights

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]han, Shujaat, et al. “A Novel Adaptive Kernel for the RBF Neural Networks.” Circuits, Systems, and Signal Processing, vol. 36, no. 4, Springer Nature, July 2016, pp. 1639–53, doi:10.1007/s00034-016-0375-7.


[2]Khan, Shujaat, et al. “A Fractional Gradient Descent-Based RBF Neural Network.” Circuits, Systems, and Signal Processing, vol. 37, no. 12, Springer Nature America, Inc, May 2018, pp. 5311–32, doi:10.1007/s00034-018-0835-3.


[3]Khan, Shujaat, et al. “Spatio-Temporal RBF Neural Networks.” 2018 3rd {IEEE} International Conference on Emerging Trends in Engineering, Sciences and Technology ({ICEEST}), {IEEE}, 2018


🌈4 Matlab代码实现

相关文章
|
12天前
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
7天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
11天前
|
安全 C#
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
|
1月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
12天前
完成切换网络+修改网络连接图标提示的代码框架
完成切换网络+修改网络连接图标提示的代码框架
|
2月前
|
安全 网络安全 开发者
探索Python中的装饰器:简化代码,增强功能网络安全与信息安全:从漏洞到防护
【8月更文挑战第30天】本文通过深入浅出的方式介绍了Python中装饰器的概念、用法和高级应用。我们将从基础的装饰器定义开始,逐步深入到如何利用装饰器来改进代码结构,最后探讨其在Web框架中的应用。适合有一定Python基础的开发者阅读,旨在帮助读者更好地理解并运用装饰器来优化他们的代码。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种结合粒子群优化(PSO)与分组卷积神经网络(GroupCNN)的时间序列预测算法。该算法通过PSO寻找最优网络结构和超参数,提高预测准确性与效率。软件基于MATLAB 2022a,提供完整代码及详细中文注释,并附带操作步骤视频。分组卷积有效降低了计算成本,而PSO则智能调整网络参数。此方法特别适用于金融市场预测和天气预报等场景。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
2月前
|
开发者 图形学 API
从零起步,深度揭秘:运用Unity引擎及网络编程技术,一步步搭建属于你的实时多人在线对战游戏平台——详尽指南与实战代码解析,带你轻松掌握网络化游戏开发的核心要领与最佳实践路径
【8月更文挑战第31天】构建实时多人对战平台是技术与创意的结合。本文使用成熟的Unity游戏开发引擎,从零开始指导读者搭建简单的实时对战平台。内容涵盖网络架构设计、Unity网络API应用及客户端与服务器通信。首先,创建新项目并选择适合多人游戏的模板,使用推荐的网络传输层。接着,定义基本玩法,如2D多人射击游戏,创建角色预制件并添加Rigidbody2D组件。然后,引入网络身份组件以同步对象状态。通过示例代码展示玩家控制逻辑,包括移动和发射子弹功能。最后,设置服务器端逻辑,处理客户端连接和断开。本文帮助读者掌握构建Unity多人对战平台的核心知识,为进一步开发打下基础。
74 0