基于深度学习的裂纹图像分类研究(Matlab代码实现)

简介: 基于深度学习的裂纹图像分类研究(Matlab代码实现)

💥1 概述

基于深度学习的裂纹图像分类研究可以帮助自动识别和分类各种材料表面上的裂纹。下面是一个基本的步骤:


1. 数据收集和预处理:收集大量的包含不同类型裂纹的图像数据集。这些图像可以是通过显微镜、红外相机或其他图像采集装置获取的。确保图像分辨率足够高,并进行必要的预处理,如灰度化、尺寸调整和图像增强。


2. 数据标注:对收集到的图像进行标注,将每个图像分配到其所属的裂纹类别中。可使用专业人员手动标注或使用自动标注算法辅助标注。


3. 构建深度学习模型:选择适合的深度学习模型架构,如卷积神经网络(CNN)。CNN在图像分类任务中表现良好。根据数据集大小和复杂度选择合适的模型结构,并进行模型的训练和验证。


4. 数据集划分:将数据集划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于模型的优化和调整超参数,测试集用于最终评估模型的性能。


5. 模型训练和优化:使用训练集对深度学习模型进行训练,并通过反向传播算法更新模型的权重和偏差。根据验证集的性能指标调整模型的超参数,如学习率、批量大小和网络层数等,以提高模型的准确性和泛化能力。


6. 模型评估和测试:使用测试集对训练好的模型进行评估和测试。计算模型的准确率、召回率、精确率等性能指标。如果模型性能不理想,可以尝试不同的网络架构或数据增强技术来改进结果。


7. 结果分析和优化:对模型的结果进行分析和解释,查看分类错误的样本,并尝试了解错误的原因。根据分析结果进行模型的优化和改进。


通过以上步骤,基于深度学习的裂纹图像分类研究可以实现对裂纹图像的自动分类。深度学习模型的优势在于其能够学习到图像中的复杂特征,并对裂纹进行准确的分类和识别。这项研究在材料工程、结构健康监测等领域具有重要的应用价值。


📚2 运行结果


替换最终图层

由于 SqueezeNet 的原始版本是一个包含 1000 个类的网络,因此我们必须使其适应正常/裂缝分类(2 类)。

gradcamMap = sum(featureMap .* sum(dScoresdMap, [1 2]), 3);
gradcamMap = extractdata(gradcamMap);
gradcamMap = rescale(gradcamMap);
subplot(3,4,i)
imshow(img);title(classfn)
hold on;
subplot(3,4,i)
imagesc(imresize(gradcamMap,inputSize(1:2) ,'Method', 'bicubic'),'AlphaData',0.5);
colormap jet
hold off;
end


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size." arXiv preprint arXiv:1602.07360 (2016).

[2] Matlab Documentation: Train Deep Learning Network to Classify New Images

[3] Matlab Documentation: Grad-CAM Reveals the Why Behind Deep Learning Decisions

[4] Zhang, Lei, et al. "Road crack detection using deep convolutional neural network." 2016 IEEE international conference on image processing (ICIP). IEEE, 2016.


🌈4 Matlab代码实现

相关文章
|
3月前
|
机器学习/深度学习 数据可视化 网络架构
增强深度学习模型的可解释性和泛化能力的方法研究
【8月更文第15天】在深度学习领域,模型的准确率和预测能力是衡量模型好坏的重要指标。然而,随着模型复杂度的增加,它们往往变得越来越难以理解,这限制了模型在某些关键领域的应用,例如医疗诊断、金融风险评估等。本文将探讨如何通过几种方法来增强深度学习模型的可解释性,同时保持或提高模型的泛化能力。
355 2
|
27天前
|
机器学习/深度学习 调度 计算机视觉
深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究
本文探讨了多种学习率调度策略在神经网络训练中的应用,强调了选择合适学习率的重要性。文章介绍了阶梯式衰减、余弦退火、循环学习率等策略,并分析了它们在不同实验设置下的表现。研究表明,循环学习率和SGDR等策略在提高模型性能和加快训练速度方面表现出色,而REX调度则在不同预算条件下表现稳定。这些策略为深度学习实践者提供了实用的指导。
33 2
深度学习中的学习率调度:循环学习率、SGDR、1cycle 等方法介绍及实践策略研究
|
1月前
|
机器学习/深度学习
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
51 2
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
【10月更文挑战第1天】深度学习中,模型微调虽能提升性能,但常导致“灾难性遗忘”,即模型在新任务上训练后遗忘旧知识。本文介绍弹性权重巩固(EWC)方法,通过在损失函数中加入正则项来惩罚对重要参数的更改,从而缓解此问题。提供了一个基于PyTorch的实现示例,展示如何在训练过程中引入EWC损失,适用于终身学习和在线学习等场景。
66 4
揭秘深度学习中的微调难题:如何运用弹性权重巩固(EWC)策略巧妙应对灾难性遗忘,附带实战代码详解助你轻松掌握技巧
|
1月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
64 2
|
1月前
|
机器学习/深度学习 算法 算法框架/工具
深度学习在图像识别中的应用及代码示例
【9月更文挑战第32天】本文将深入探讨深度学习在图像识别领域的应用,包括其原理、技术、优势以及挑战。我们将通过一个简单的代码示例,展示如何使用深度学习技术进行图像识别。无论你是初学者还是有经验的开发者,都可以从中获得启发和帮助。让我们一起探索这个充满无限可能的领域吧!
69 8
|
1月前
|
机器学习/深度学习 搜索推荐 算法
深度学习-点击率预估-研究论文2024-09-14速读
深度学习-点击率预估-研究论文2024-09-14速读
45 0
|
2月前
|
机器学习/深度学习 算法框架/工具 Python
深度学习在图像识别中的应用及其代码实现
【9月更文挑战第24天】本文将探讨深度学习在图像识别领域的应用,并展示如何通过代码实现这一过程。我们将介绍深度学习的基本原理,以及它在图像识别中的优势和挑战。然后,我们将通过一个简单的代码示例,展示如何使用深度学习进行图像识别。最后,我们将讨论深度学习在未来图像识别中的潜力和可能的发展方向。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的USB摄像头实时视频采集与水果识别matlab仿真
本项目展示了使用MATLAB 2022a和USB摄像头识别显示器上不同水果图片的算法。通过预览图可见其准确识别效果,完整程序无水印。项目采用GoogleNet(Inception-v1)深度卷积神经网络,利用Inception模块捕捉多尺度特征。代码含详细中文注释及操作视频,便于理解和使用。
|
3月前
|
机器学习/深度学习 算法 PyTorch
PyTorch Lightning:简化深度学习研究与开发
【8月更文第27天】PyTorch Lightning 是一个用于简化 PyTorch 开发流程的轻量级封装库。它的目标是让研究人员和开发者能够更加专注于算法和模型的设计,而不是被训练循环和各种低级细节所困扰。通过使用 PyTorch Lightning,开发者可以更容易地进行实验、调试和复现结果,从而加速研究与开发的过程。
138 1