1 概述
正交频分复用 (OFDM) 是一种流行的调制方案,已在无线宽带系统中广泛采用,以对抗无线信道中的频率选择性衰落。信道状态信息 (CSI) 对于 OFDM 系统中的相干检测和解码至关重要。通常,在检测到传输数据之前,可以通过导频来估计 CSI。使用估计的 CSI,可以在接收器处恢复传输的符号。从历史上看,OFDM系统中的信道估计已经被彻底研究过。传统的估计方法,即最小二乘法 (LS) 和最小均方误差 (MMSE),已在各种条件下得到利用和优化 [2]。 LS估计的方法不需要事先的信道统计,但其性能可能不足。 MMSE 估计通常通过利用通道的二阶统计来获得更好的检测性能。
这是使用深度学习工具箱中的长短期记忆(LSTM)网络在接收器处实现符号分类的示例,用于OFDM系统中的信号检测。
基于LSTM的神经网络针对单个子载波进行训练,其中计算符号错误率(SER)并与最小二乘(LS)和最小均方误差(MMSE)估计值进行比较。
在此初始调查中,假定无线信道在脱机训练和联机部署阶段是固定的。为了测试神经网络的鲁棒性,对每个传输的OFDM数据包应用随机相移。
考虑了试点符号数量和循环前缀 (CP) 长度的影响。
本文介绍了正交频分复用(OFDM)系统中用于信道估计和信号检测的深度学习的初步结果。在这封信中,我们利用深度学习以端到端的方式处理无线OFDM信道。与现有的OFDM接收器首先显式估计信道状态信息(CSI),然后使用估计的CSI检测/恢复传输的符号不同,所提出的基于深度学习的方法隐式估计CSI并直接恢复传输的符号。为了解决信道失真问题,首先使用基于信道统计的仿真生成的数据离线训练深度学习模型,然后直接用于恢复在线传输的数据。根据我们的仿真结果,基于深度学习的方法可以解决通道失真问题,并检测传输的符号,其性能可与最小均方误差估计器相媲美。此外,当使用较少的训练飞行员,省略循环前缀并且存在非线性削波噪声时,基于深度学习的方法比传统方法更可靠。综上所述,深度学习是无线通信中信道估计和信号检测的有前途的工具,具有复杂的信道失真和干扰。
2 基于深度学习的估计和检测
2.1 深度学习方法
1.2 模型训练
其余详细部分见第四部分。
2 仿真结果