【信号检测】基于长短期记忆(LSTM)在OFDM系统中基于深度学习的信号检测(Matlab代码实现)

简介: 【信号检测】基于长短期记忆(LSTM)在OFDM系统中基于深度学习的信号检测(Matlab代码实现)

1 概述

正交频分复用 (OFDM) 是一种流行的调制方案,已在无线宽带系统中广泛采用,以对抗无线信道中的频率选择性衰落。信道状态信息 (CSI) 对于 OFDM 系统中的相干检测和解码至关重要。通常,在检测到传输数据之前,可以通过导频来估计 CSI。使用估计的 CSI,可以在接收器处恢复传输的符号。从历史上看,OFDM系统中的信道估计已经被彻底研究过。传统的估计方法,即最小二乘法 (LS) 和最小均方误差 (MMSE),已在各种条件下得到利用和优化 [2]。 LS估计的方法不需要事先的信道统计,但其性能可能不足。 MMSE 估计通常通过利用通道的二阶统计来获得更好的检测性能。


这是使用深度学习工具箱中的长短期记忆(LSTM)网络在接收器处实现符号分类的示例,用于OFDM系统中的信号检测。

基于LSTM的神经网络针对单个子载波进行训练,其中计算符号错误率(SER)并与最小二乘(LS)和最小均方误差(MMSE)估计值进行比较。

在此初始调查中,假定无线信道在脱机训练和联机部署阶段是固定的。为了测试神经网络的鲁棒性,对每个传输的OFDM数据包应用随机相移。

考虑了试点符号数量和循环前缀 (CP) 长度的影响。


本文介绍了正交频分复用(OFDM)系统中用于信道估计和信号检测的深度学习的初步结果。在这封信中,我们利用深度学习以端到端的方式处理无线OFDM信道。与现有的OFDM接收器首先显式估计信道状态信息(CSI),然后使用估计的CSI检测/恢复传输的符号不同,所提出的基于深度学习的方法隐式估计CSI并直接恢复传输的符号。为了解决信道失真问题,首先使用基于信道统计的仿真生成的数据离线训练深度学习模型,然后直接用于恢复在线传输的数据。根据我们的仿真结果,基于深度学习的方法可以解决通道失真问题,并检测传输的符号,其性能可与最小均方误差估计器相媲美。此外,当使用较少的训练飞行员,省略循环前缀并且存在非线性削波噪声时,基于深度学习的方法比传统方法更可靠。综上所述,深度学习是无线通信中信道估计和信号检测的有前途的工具,具有复杂的信道失真和干扰。


2 基于深度学习的估计和检测

2.1 深度学习方法

1.2 模型训练

其余详细部分见第四部分。

2 仿真结果

 

3 Matlab代码实现


相关文章
|
1月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
194 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
21天前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
111 65
|
23天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
84 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
2月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
65 18
|
2月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
7月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
7月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
274 2

热门文章

最新文章