【ARIMA-WOA-CNN-LSTM】合差分自回归移动平均方法-鲸鱼优化-卷积神经网络-长短期记忆神经网络研究(Python代码实现)

简介: 【ARIMA-WOA-CNN-LSTM】合差分自回归移动平均方法-鲸鱼优化-卷积神经网络-长短期记忆神经网络研究(Python代码实现)

💥1 概述

1.1 ARIMA模型

差分自回归移动平均模型( ARIMA)元一PE用于各领域的预测模型 17-19],主要包含自回归模型和

移动平均模型2个部分。自回归模型的阶数为p,信号差分的阶数为d ,移动平均模型的阶数为q,因此模型通常表示成ARIMA( p,d ,q) ,具体的数学表达式为:


( 1)对所研究的时间序列数据进行平稳性验证,如果不满足要求,则对其进行d阶差分转换成平稳时间序列。

(2)通过自相关系数图和偏自相关系数图以及贝叶斯信息准则[201确定阶数p和q。

(3)采用确定好阶数的ARIMA( p , d , q)拟合时间序列,并根据预测后的数据和原时间序列进行结果统计和预测精度分析。


1.2 鲸鱼优化算法

座头鲸有特殊的捕猎方法,这种觅食行为被称为泡泡网觅食法;标准 WOA 模拟了座头鲸特有的搜索方法和围捕机制,主要包括:围捕猎物、气泡网捕食、搜索猎物三个重要阶段。WOA 中每个座头鲸的位置代表一个潜在解,通过在解空间中不断更新鲸鱼的位置,最终获得全局最优解。


1.3 卷积神经网络

CNN 特征提取的流程见图 1。

通过 CNN 特征提取后得到具有时间依赖性的数据,将数据输入到 LSTM 神经网络中进行训练。

长短时记忆网络( LSTM) 是在循环神经网络( RNN)的基础上加以改进而来

1.4 LSTM 模型

LSTM 深度学习算法与递归神经网络( Recurrent Neural Network ,RNN)的不同之处在于前者在后者的基础上加入了细胞状态和门结两个结构[ 16-17]以此来预测太阳能辐照强度,通过对比可发现LSTM模型的表现比时间递归型神经网络和隐马尔科夫模型的表现更好。

传统的RNN在解决时序长相关问题时存在梯度消失和梯度爆炸的问题,而细胞状态的作用是将具体信息连续地传递到RNN上,因此能够有效解决传统RNN存在的问题。ISTM是基于门控制单元结构的深度学习模型,通过遗忘门、输入门和输出门这三种门类型控制传输信息[18]。LSTM神经网络如图1所示,方框内是单个神经元细胞结构, c表示神经元细胞的状态值, h表示神经元细胞的输出值。LSTM 神经网络细胞的结构如图2所示。


📚2 运行结果

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]陈帅宇,赵龑骧,蒋磊.基于ARIMA-CNN-LSTM模型的黄河开封段水位预测研究[J].水利水电快报,2023,44(01):15-22.DOI:10.15974/j.cnki.slsdkb.2023.01.002.


[2]沈露露,梁嘉乐,周雯.基于ARIMA-LSTM的能量预测算法[J].无线电通信技术,2023,49(01):150-156.


[3]岑威钧,王肖鑫,蒋明欢.基于EEMD-LSTM-ARIMA的土石坝渗压预测模型研究[J].水资源与水工程学报,2023,34(02):180-185.


[4]王鑫,李安桂,李扬,卜令晨,彭怀午,牛东圣,许晨琛,韩欧.基于ARIMA-LSTM模型的综合能源系统负荷与风光资源预测[J].西安建筑科技大学学报(自然科学版),2022,54(05):762-769.DOI:10.15986/j.1006-7930.2022.05.015.


🌈4 Python代码实现

相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
200 55
|
28天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
152 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
271 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
53 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
28天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!