智能优化算法——灰狼优化算法(Python&Matlab实现)

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 智能优化算法——灰狼优化算法(Python&Matlab实现)

1 灰狼优化算法基本思想

灰狼优化算法是一种群智能优化算法,它的独特之处在于一小部拥有绝对话语权的灰狼带领一群灰狼向猎物前进。在了解灰狼优化算法的特点之前,我们有必要了解灰狼群中的等级制度

                                   

灰狼群一般分为4个等级:处于第一等级的灰狼用α表示,处于第二阶级的灰狼用β表示,处于第三阶段的灰狼用δ表示,处于第四等级的灰狼用ω表示。按照上述等级的划分,灰狼α对灰狼β、δ和ω有绝对的支配权;灰狼ω对灰狼δ和ω有绝对的支配权;灰狼δ对灰狼ω有绝对的支配权


2 灰狼捕食猎物过程

GWO 优化过程包含了灰狼的社会等级分层、跟踪、包围和攻击猎物等步骤,其步骤具体情况如下所示。

2.1 社会等级分层

当设计 GWO 时,首先需构建灰狼社会等级层次模型。计算种群每个个体的适应度,将狼群中适应度最好的三匹灰狼依次标记为 而剩下的灰狼标记为 。也就是说,灰狼群体中的社会等级从高往低排列依次为。GWO 的优化过程主要由每代种群中的最好三个解(即  )来指导完成。

2.2 包围猎物

灰狼群体通过以下几个公式逐渐接近并包围猎物:

                           

式中,t是当前的迭代代数,A和C是系数向量,Xp和X分别是猎物的位置向量和灰狼的位置向量。A和C的计算公式如下:  


式中,a是收敛因子,随着迭代次数从2线性减小到0,r1和r 2服从[ 0,1]之间的均匀分布。

2.3 狩猎

狼群中其他灰狼个体Xi根据α、β和百的位置Xa、XB和Xo来更新各自的位置:

                                 

式中,Da,Dβ和D6分别表示a,β和5与其他个体间的距离;Xa,Xβ和X6分别代表a,β和5的当前位置;C1,C2,C3是随机向量,X是当前灰狼的位置。

灰狼个体的位置更新公式如下:

                               


2.4 攻击猎物

构建攻击猎物模型的过程中,根据2)中的公式,a值的减少会引起 A 的值也随之波动。换句话说,A 是一个在区间[-a,a](备注:原作者的第一篇论文里这里是[-2a,2a],后面论文里纠正为[-a,a])上的随机向量,其中a在迭代过程中呈线性下降。当 A 在[-1,1]区间上时,则捜索代理(Search Agent)的下一时刻位置可以在当前灰狼与猎物之间的任何位置上。


2.5 寻找猎物

灰狼主要依赖  、、 的信息来寻找猎物。它们开始分散地去搜索猎物位置信息,然后集中起来攻击猎物。对于分散模型的建立,通过|A|>1使其捜索代理远离猎物,这种搜索方式使 GWO 能进行全局搜索。GWO 算法中的另一个搜索系数是C。从2.2中的公式可知,C向量是在区间范围[0,2]上的随机值构成的向量,此系数为猎物提供了随机权重,以便増加(|C|>1)或减少(|C|<1)。这有助于 GWO 在优化过程中展示出随机搜索行为,以避免算法陷入局部最优。值得注意的是,C并不是线性下降的,C在迭代过程中是随机值,该系数有利于算法跳出局部,特别是算法在迭代的后期显得尤为重要。


3 实现步骤及程序框图

3.1 步骤

Step1:种群初始化:包括种群数量N,最大迭代次数Maxlter,调控参数a,A,C.Step2:根据变量的上下界来随机初始化灰狼个体的位置X。

Step3:计算每一头狼的适应度值,并将种群中适应度值最优的狼的位置信息保存,将种群中适应度值次优的狼的位置信息保存为,将种群中适应度第三优的灰狼的位置信息保存为。

Step4:更新灰狼个体X的位置。

step5:更新参数a,A和C。

Step6:计算每一头灰狼的适应度值,并更新三匹头狼的最优位置。

Step7:判断是否到达最大迭代次数Maxlter,若满足则算法停止并返回Xa的值作为最终得到的最优解,否则转到Step4。


3.2 程序框图

4 Python代码实现

#=======导入线管库======
import random
import numpy
def GWO(objf, lb, ub, dim, SearchAgents_no, Max_iter):
    #===初始化 alpha, beta, and delta_pos=======
    Alpha_pos = numpy.zeros(dim)  # 位置.形成30的列表
    Alpha_score = float("inf")  # 这个是表示“正负无穷”,所有数都比 +inf 小;正无穷:float("inf"); 负无穷:float("-inf")
    Beta_pos = numpy.zeros(dim)
    Beta_score = float("inf")
    Delta_pos = numpy.zeros(dim)
    Delta_score = float("inf")  # float() 函数用于将整数和字符串转换成浮点数。
    #====list列表类型=============
    if not isinstance(lb, list):  # 作用:来判断一个对象是否是一个已知的类型。 其第一个参数(object)为对象,第二个参数(type)为类型名,若对象的类型与参数二的类型相同则返回True
        lb = [lb] * dim  # 生成[100,100,.....100]30个
    if not isinstance(ub, list):
        ub = [ub] * dim
    #========初始化所有狼的位置===================
    Positions = numpy.zeros((SearchAgents_no, dim))
    for i in range(dim):  # 形成5*30个数[-100,100)以内
        Positions[:, i] = numpy.random.uniform(0, 1, SearchAgents_no) * (ub[i] - lb[i]) + lb[
            i]  # 形成[5个0-1的数]*100-(-100)-100
    Convergence_curve = numpy.zeros(Max_iter)
    #========迭代寻优=====================
    for l in range(0, Max_iter):  # 迭代1000
        for i in range(0, SearchAgents_no):  # 5
            #====返回超出搜索空间边界的搜索代理====
            for j in range(dim):  # 30
                Positions[i, j] = numpy.clip(Positions[i, j], lb[j], ub[
                    j])  # clip这个函数将将数组中的元素限制在a_min(-100), a_max(100)之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min。
        #===========以上的循环里,Alpha、Beta、Delta===========
        a = 2 - l * ((2) / Max_iter);  #   a从2线性减少到0
        for i in range(0, SearchAgents_no):
            for j in range(0, dim):
                r1 = random.random()  # r1 is a random number in [0,1]主要生成一个0-1的随机浮点数。
                r2 = random.random()  # r2 is a random number in [0,1]
                A1 = 2 * a * r1 - a;  # Equation (3.3)
                C1 = 2 * r2;  # Equation (3.4)
                # D_alpha表示候选狼与Alpha狼的距离
                D_alpha = abs(C1 * Alpha_pos[j] - Positions[
                    i, j]);  # abs() 函数返回数字的绝对值。Alpha_pos[j]表示Alpha位置,Positions[i,j])候选灰狼所在位置
                X1 = Alpha_pos[j] - A1 * D_alpha;  # X1表示根据alpha得出的下一代灰狼位置向量
                r1 = random.random()
                r2 = random.random()
                A2 = 2 * a * r1 - a;  #
                C2 = 2 * r2;
                D_beta = abs(C2 * Beta_pos[j] - Positions[i, j]);
                X2 = Beta_pos[j] - A2 * D_beta;
                r1 = random.random()
                r2 = random.random()
                A3 = 2 * a * r1 - a;
                C3 = 2 * r2;
                D_delta = abs(C3 * Delta_pos[j] - Positions[i, j]);
                X3 = Delta_pos[j] - A3 * D_delta;
                Positions[i, j] = (X1 + X2 + X3) / 3  # 候选狼的位置更新为根据Alpha、Beta、Delta得出的下一代灰狼地址。
        Convergence_curve[l] = Alpha_score;
        if (l % 1 == 0):
            print(['迭代次数为' + str(l) + ' 的迭代结果' + str(Alpha_score)]);  # 每一次的迭代结果
#========函数==========
def F1(x):
    s=numpy.sum(x**2);
    return s
#===========主程序================
func_details = ['F1', -100, 100, 30]
function_name = func_details[0]
Max_iter = 1000#迭代次数
lb = -100#下界
ub = 100#上届
dim = 30#狼的寻值范围
SearchAgents_no = 5#寻值的狼的数量
x = GWO(F1, lb, ub, dim, SearchAgents_no, Max_iter)


             

5 Matlab实现

% 主程序 GWO
clear
close all
clc
%%完整代码见微信公众号:电力系统与算法之美
%输入关键字:灰狼算法
SearchAgents_no = 30 ; % 种群规模
dim = 10 ; % 粒子维度
Max_iter = 1000 ; % 迭代次数
ub = 5 ;
lb = -5 ;
%% 初始化三匹头狼的位置
Alpha_pos=zeros(1,dim);
Alpha_score=inf; 
Beta_pos=zeros(1,dim);
Beta_score=inf; 
Delta_pos=zeros(1,dim);
Delta_score=inf; 
Convergence_curve = zeros(Max_iter,1);
%% 开始循环
for l=1:Max_iter
    for i=1:size(Positions,1)  
       %% 返回超出搜索空间边界的搜索代理
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               
        %% 计算每个搜索代理的目标函数
        fitness=sum(Positions(i,:).^2);
        %% 更新 Alpha, Beta, and Delta
        if fitness<Alpha_score 
            Alpha_score=fitness; % Update alpha
            Alpha_pos=Positions(i,:);
        end
        if fitness>Alpha_score && fitness<Beta_score 
            Beta_score=fitness; % Update beta
            Beta_pos=Positions(i,:);
        end
        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 
            Delta_score=fitness; % Update delta
            Delta_pos=Positions(i,:);
        end
    end
    a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
    %% 更新搜索代理的位置,包括omegas
    for i=1:size(Positions,1)
        for j=1:size(Positions,2)     
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]
            A1=2*a*r1-a; % Equation (3.3)
            C1=2*r2; % Equation (3.4)
            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
            r1=rand();
            r2=rand();
            A2=2*a*r1-a; % Equation (3.3)
            C2=2*r2; % Equation (3.4)
            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       
            r1=rand();
            r2=rand(); 
            A3=2*a*r1-a; % Equation (3.3)
            C3=2*r2; % Equation (3.4)
            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             
            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
        end
    end
    Convergence_curve(l)=Alpha_score;
    disp(['Iteration = ' num2str(l)  ', Evaluations = ' num2str(Alpha_score)]);
end
%========可视化==============
figure('unit','normalize','Position',[0.3,0.35,0.4,0.35],'color',[1 1 1],'toolbar','none')
%% 目标空间
subplot(1,2,1);
x = -5:0.1:5;y=x;
L=length(x);
f=zeros(L,L);
for i=1:L
    for j=1:L
       f(i,j) = x(i)^2+y(j)^2;
    end
end
surfc(x,y,f,'LineStyle','none');
xlabel('x_1');
ylabel('x_2');
zlabel('F')
title('Objective space')
%% 狼群算法 
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',1.5)
title('Convergence_curve')
xlabel('Iteration');
ylabel('Best score obtained so far');
axis tight
grid on
box on
legend('GWO')
display(['The best solution obtained by GWO is : ', num2str(Alpha_pos)]);
display(['The best optimal value of the objective funciton found by GWO is : ', num2str(Alpha_score)]);


                   

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
13天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
101 63
|
6天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
58 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
24天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
72 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
24天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
67 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
24天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
67 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
28天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
40 2
|
1月前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。