Redis 中的布隆过滤器

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis v4.0 之后有了 Module(模块/插件) 功能,Redis Modules 让 Redis 可以使用外部模块扩展其功能 。布隆过滤器就是其中的 Module。详情可以查看 Redis 官方对 Redis Modules 的介绍:https://redis.io/modules

使用 Docker 安装

如果我们需要体验 Redis 中的布隆过滤器非常简单,通过 Docker 就可以了!我们直接在 Google 搜索 docker redis bloomfilter 然后在排除广告的第一条搜素结果就找到了我们想要的答案(这是我平常解决问题的一种方式,分享一下),具体地址:https://hub.docker.com/r/redislabs/rebloom/ (介绍的很详细 )。

具体操作如下:

➜  ~ docker run -p 6379:6379 --name redis-redisbloom redislabs/rebloom:latest
➜  ~ docker exec -it redis-redisbloom bash
root@21396d02c252:/data# redis-cli
127.0.0.1:6379>

注意:当前rebloom镜像已经被废弃,官方推荐使用redis-stackopen in new window

# 常用命令一览

注意:key : 布隆过滤器的名称,item : 添加的元素。

  1. BF.ADD:将元素添加到布隆过滤器中,如果该过滤器尚不存在,则创建该过滤器。格式:BF.ADD {key} {item}
  2. BF.MADD : 将一个或多个元素添加到“布隆过滤器”中,并创建一个尚不存在的过滤器。该命令的操作方式BF.ADD与之相同,只不过它允许多个输入并返回多个值。格式:BF.MADD {key} {item} [item ...]
  3. BF.EXISTS : 确定元素是否在布隆过滤器中存在。格式:BF.EXISTS {key} {item}
  4. BF.MEXISTS:确定一个或者多个元素是否在布隆过滤器中存在格式:BF.MEXISTS {key} {item} [item ...]

另外, BF.RESERVE 命令需要单独介绍一下:

这个命令的格式如下:

BF.RESERVE {key} {error_rate} {capacity} [EXPANSION expansion]

下面简单介绍一下每个参数的具体含义:

  1. key:布隆过滤器的名称
  2. error_rate : 期望的误报率。该值必须介于 0 到 1 之间。例如,对于期望的误报率 0.1%(1000 中为 1),error_rate 应该设置为 0.001。该数字越接近零,则每个项目的内存消耗越大,并且每个操作的 CPU 使用率越高。
  3. capacity: 过滤器的容量。当实际存储的元素个数超过这个值之后,性能将开始下降。实际的降级将取决于超出限制的程度。随着过滤器元素数量呈指数增长,性能将线性下降。

可选参数:

  • expansion:如果创建了一个新的子过滤器,则其大小将是当前过滤器的大小乘以expansion。默认扩展值为 2。这意味着每个后续子过滤器将是前一个子过滤器的两倍。

# 实际使用

127.0.0.1:6379> BF.ADD myFilter java
(integer) 1
127.0.0.1:6379> BF.ADD myFilter javaguide
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter java
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter javaguide
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter github
(integer) 0


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
6月前
|
缓存 NoSQL Apache
【Redis】布隆过滤器原理与应用
【Redis】布隆过滤器原理与应用
85 1
|
6月前
|
存储 缓存 NoSQL
Redis 布隆过滤器实战「缓存击穿、雪崩效应」
Redis 布隆过滤器实战「缓存击穿、雪崩效应」
163 1
Redis 布隆过滤器实战「缓存击穿、雪崩效应」
|
6月前
|
NoSQL 算法 程序员
【Redis】布隆过滤器
【Redis】布隆过滤器
|
6月前
|
存储 缓存 NoSQL
在Java中实现redis缓存中的布隆过滤器
在Java中实现redis缓存中的布隆过滤器
139 0
|
5月前
|
NoSQL Redis 数据库
【Redis从入门到入土】布隆过滤器简介、特点和原理
【6月更文挑战第1天】布隆过滤器是一种节省内存的不确定数据结构,用于判断元素是否可能在一个集合中。它由位数组和多个哈希函数组成,能快速插入和查询,但存在误判风险:可能存在假阳性(判断存在但实际不存在),但绝无假阴性(判断不存在则确实不存在)。适用于大规模数据的去重问题,如电话号码判断、安全网站链接检查、黑名单和白名单校验。其工作原理是通过多个哈希函数将元素映射到位数组中,添加时设置相应位置为1,查询时所有位置都为1则可能存在,有0则肯定不存在。由于哈希冲突,可能导致误判,且一旦添加元素无法删除,以避免影响其他元素。
69 4
|
缓存 NoSQL 安全
Redis缓存雪崩、击穿、穿透解释及解决方法,缓存预热,布隆过滤器 ,互斥锁
Redis缓存雪崩、击穿、穿透解释及解决方法,缓存预热,布隆过滤器 ,互斥锁
249 5
|
6月前
|
缓存 NoSQL 算法
【redis】布隆过滤器(Bloom Filter)原理解析与应用
【redis】布隆过滤器(Bloom Filter)原理解析与应用
102 1
|
6月前
|
存储 NoSQL 算法
深入浅出Redis(十一):Redis四种高级数据结构:Geosptial、Hypeloglog、Bitmap、Bloom Filter布隆过滤器
深入浅出Redis(十一):Redis四种高级数据结构:Geosptial、Hypeloglog、Bitmap、Bloom Filter布隆过滤器
|
6月前
|
缓存 NoSQL Redis
Redis系列-9.Redis布隆过滤器BloomFilter
Redis系列-9.Redis布隆过滤器BloomFilter
102 1
|
6月前
|
数据采集 存储 NoSQL
Redis 中的布隆过滤器
Redis 中的布隆过滤器
47 0
下一篇
无影云桌面