【ICLR 2018】模型集成的TRPO算法【附代码】

简介: 【ICLR 2018】模型集成的TRPO算法【附代码】
  • 论文题目:model-ensemble trust-region policy optimization

所解决的问题?

  model free的方法具有high sample complexity ,难将其用于real-world。用ensemble的方式来克服model bias。

背景

  标准的model-based方法是交替使用model learning和policy aptimization。model learning通常就是用智能体与环境的交互数据做监督学习,而策略优化部分是基于learned model做搜索,寻求策略改进。这一类算法被称作vanilla model-based RL。此类算法需要足够多的数据来学习model,所学的模型越准确,优化策略越好,在real world中也会有较好的表现。

  vanilla model-based RL在低维相对较简单问题上会有较好的处理效果,然而在连续控制问题上效果较差,并且非常不稳定。 The reason is that the policy optimization tends to exploit regions where insufficient data is available to train the model, leading to catastrophic failures. 这类问题被称作model-bias,或者也可以被视为过拟合。处理过拟合问题,当然可以从监督学习算法方面寻求灵感,比如加regularization或者cross validation,这类算法处理的数据满足独立同分布,而model-based强化学习算法中数据稀缺,模型不精准,如果再引入像神经网络这样的expressive models只会恶化结果。

  model-based的方法最多的用于机器人领域。效果较好的是线性模型的方法。然而这种方法对复杂非线性系统,或者说高维状态空间系统效果不好。另一种办法就是非参数的高斯过程的方法(GP),这类方法有维度灾难的问题,目前主要用于低维空间。

  尽管也有一些基于神经网络的model-based 强化学习方法效果还是不太好。对于一些较难的控制对象,通常会结合model-free的强化学习方法或者是结合特定领域的学习和规划算法。

所采用方法

  原始的MBRL方法:

  作者采用一个ensemble Neural Network来处理enviorment中数据的不确定性。其实说白了就是model的学习用了一个集成的神经网络来做。使用交替执行model learning和policy learning,与固定dataset学习model的方法相比,能够处理更具挑战性的任务。

  本文是假定奖励函数已知,而状态转移概率未知来做的,因此并未学习奖励函数。

Model Learning

  model learning的过程中,作者使用神经网络去预测状态的改变量,而不是预测下一个状态。这会使得神经网络不需要去记住输入状态。这种做法在上下状态改变较小的情况下会比较有效。其loss函数如下:

image.png

Policy Learning

  Policy Learning的目标是:

image.png


  其中ϕ \phiϕ表示的就是model用的是所学的model。

ME-TRPO

取得的效果?

  策略学习效果鲁棒性更强,较好避免过拟合。达到了与SOTA model-free算法相同的结果。

所出版信息?作者信息?

  一篇来自伯克利的文章,一作Thanard Kurutach是加州大学伯克利分校AI研究(BAIR)的博士,由Stuart Russell教授和Pieter Abbeel教授共同指导。兴趣是开发使机器人能够通过学习和计划有效解决复杂决策问题的算法。

  个人主页:http://people.eecs.berkeley.edu/~thanard.kurutach/

其它链接

相关文章
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
70 3
|
2天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
31 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
24天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
24天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 算法 Python
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。
随机森林算法是一种强大的集成学习方法,通过构建多个决策树并综合其结果进行预测。本文详细介绍了随机森林的工作原理、性能优势、影响因素及调优方法,并提供了Python实现示例。适用于分类、回归及特征选择等多种应用场景。
60 7
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
108 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
104 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
3月前
|
Java Maven Docker
gitlab-ci 集成 k3s 部署spring boot 应用
gitlab-ci 集成 k3s 部署spring boot 应用
|
2月前
|
消息中间件 监控 Java
您是否已集成 Spring Boot 与 ActiveMQ?
您是否已集成 Spring Boot 与 ActiveMQ?
59 0

热门文章

最新文章