【5分钟paper】基于强化学习的策略搜索算法的自主直升机控制

简介: 【5分钟paper】基于强化学习的策略搜索算法的自主直升机控制
  • 论文题目:Autonomous Helicopter Control using Reinforcement Learning Policy Search Methods

所解决的问题?

  将策略搜索方法用于直升机控制(外环控制)。并建立了一个对所学得的model鲁棒性更强的框架。

背景

  传统的基于模型的强化学习算法make a certainty equivalence assumption on their learned models,然后使用动态规划的算法进行求解,然而将其用于实际问题还是会存在许多问题:

  1. 实际问题状态观测通常是非完美的,是POMDP问题。
  2. Physical Systems 通常具有较高维度的状态空间,存在维度灾难问题(curse of dimensionality)。并且不管你使用何种学习算法,其都不能学习到控制系统的微妙之处,因此我们期望控制算法对undermodeling(model bias)具有一定的鲁棒性。
  3. 在实际的问题中采样成本比较高。算法需要权衡探索和利用的关系,用于最大程度减少采样。

所采用方法

modeling

控制器

  控制器用的PD和贝叶斯优化什么的,作者在总结中提到了将策略搜索用于内层循环,也就是Dyna框架。

  感兴趣的看原文吧,我已经看地晕晕地。看早些年的论文经常都是看得不明不白。

相关文章
|
7月前
|
机器学习/深度学习 数据采集 搜索推荐
Paper Digest | 突破个性化推荐数据稀疏性:长尾增强的图对比学习算法研究
本文提出了一种新的长尾增强的图对比学习方法(LAGCL),该方法促使模型同时兼顾头部节点与尾部节点之间的知识,并通过长尾增强技术来使模型产出更均匀更准确的节点表征,从而改进基于 GNN 的推荐任务。
|
7月前
|
机器学习/深度学习 算法 Python
【Python强化学习】时序差分法Sarsa算法和Qlearning算法在冰湖问题中实战(附源码)
【Python强化学习】时序差分法Sarsa算法和Qlearning算法在冰湖问题中实战(附源码)
105 1
|
7月前
|
机器学习/深度学习 人工智能 算法
【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
1207 1
|
2月前
|
机器学习/深度学习 算法 机器人
多代理强化学习综述:原理、算法与挑战
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
238 5
|
1天前
|
机器学习/深度学习 算法
强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法
Richard Sutton领导的团队提出了一种称为“奖励中心化”的方法,通过从观察到的奖励中减去其经验平均值,使奖励更加集中,显著提高了强化学习算法的性能。该方法在解决持续性问题时表现出色,尤其是在折扣因子接近1的情况下。论文地址:https://arxiv.org/pdf/2405.09999
23 15
|
19天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
19天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
4月前
|
机器学习/深度学习 算法 TensorFlow
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
68 1
|
4月前
|
机器学习/深度学习 存储 算法
强化学习实战:基于 PyTorch 的环境搭建与算法实现
【8月更文第29天】强化学习是机器学习的一个重要分支,它让智能体通过与环境交互来学习策略,以最大化长期奖励。本文将介绍如何使用PyTorch实现两种经典的强化学习算法——Deep Q-Network (DQN) 和 Actor-Critic Algorithm with Asynchronous Advantage (A3C)。我们将从环境搭建开始,逐步实现算法的核心部分,并给出完整的代码示例。
321 1
|
4月前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
57 0