基于凸多边形最大化的高光谱端体提取算法(Matlab代码实现)

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 基于凸多边形最大化的高光谱端体提取算法(Matlab代码实现)

💥1 概述


从高光谱图像中提取纯端体是目标检测、分类和解混应用中非常重要的步骤。利用凸几何的概念,提出了一种新的端部提取算法。该算法使用凸多边形最大化来确定一个凸集,该凸集根据测量员的公式给出最大的凸多边形面积。所提算法的并行实现有助于找到更有效的独特像素。通过合成数据证明了所提算法在存在噪声时的鲁棒性。利用真实高光谱数据进行的仿真结果表明,所提算法将光谱角度误差(SAE)和光谱信息发散误差(SID)降低了2.4–8.8%。所提算法在丰度映射中的有效性也使用均方根误差(RMSE)进行了验证。所提算法的RMSE也提高了1.7–7.6%。


📚2 运行结果

部分代码:

%% demo_CPM
clc;
close all;
clear all;
addpath('../data');
%% Image Read
s=load('Cuprite.mat');  % link for data source : https://rslab.ut.ac.ir/data
p=s.nRow;
q=s.nCol;
Bands=188;
Y=s.Y;
x=hyperConvert3d(Y,p,q,Bands);
%% Virtual Dimension
VD=12;
%% CPM algorithm
[endmemberindex] = CPM(Y,VD);
endmemberindex_CPM=change_index(endmemberindex,p,q);
%% VCA algorithm
[U_VCA,e_index,snrEstimate]=hyperVca(Y,VD);
endmemberindex_VCA=change_index(e_index,p,q);    
%% gt compare
t1=load('groundTruth_Cuprite_nEnd12.mat');
gt=t1.M;
n1=gt(3:103,:);
n2=gt(114:147,:);
n3=gt(168:220,:);
gt=[n1;n2;n3];
[gt_m,gt_n]=size(gt);
for i=1:gt_n
    for j=1:Bands
        extracted_VCA(j,i)=x(endmemberindex_VCA(i,1),endmemberindex_VCA(i,2),j);
        extracted_CPM(j,i)=x(endmemberindex_CPM(i,1),endmemberindex_CPM(i,2),j);
    end
end
%% SAM Calculation
ex_n=gt_n;
store_VCA=[0,0];
store_CPM=[0,0];
sam_VCA=0;
sam_CPM=0;
sam_total_VCA=0;
sam_total_CPM=0;
for i=1:gt_n
    for j=1:ex_n
        Mat_SAM_CPM(i,j)=real(acos(dot(gt(:,i),extracted_CPM(:,j))/(norm(gt(:,i)*norm(extracted_CPM(:,j))))));
        Mat_SAM_VCA(i,j)=real(acos(dot(gt(:,i),extracted_VCA(:,j))/(norm(gt(:,i)*norm(extracted_VCA(:,j))))));
    end
end
for i=1:gt_n
    %CPM
    [max_value1,mrow]=min(Mat_SAM_CPM);
    [max_value,col_CPM]=min(max_value1);
    sam_total_CPM=sam_total_CPM+max_value;
    sam_CPM=[sam_CPM;max_value];
    row_CPM=mrow(col_CPM);
    s1=[row_CPM,col_CPM];
    store_CPM=[store_CPM;s1];
    save_CPM(row_CPM)=max_value;
    Mat_SAM_CPM(row_CPM,:)=[100*ones];
    Mat_SAM_CPM(:,col_CPM)=[100*ones];
    %VCA
    [max_value1,mrow]=min(Mat_SAM_VCA);
    [max_value,col_VCA]=min(max_value1);
    sam_total_VCA=sam_total_VCA+max_value;
    sam_VCA=[sam_VCA;max_value];
    row_VCA=mrow(col_VCA);
    s1=[row_VCA,col_VCA];
    store_VCA=[store_VCA;s1];
    save_VCA(row_VCA)=max_value;
    Mat_SAM_VCA(row_VCA,:)=[100*ones];
    Mat_SAM_VCA(:,col_VCA)=[100*ones];
end
rms_sae=[rms(save_CPM);
    rms(save_VCA)];
rms_sae = radtodeg(rms_sae);
disp('RMSSAE of VCA');
disp(rms_sae(2));
disp('RMSSAE of CPM');
disp(rms_sae(1));

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Dharambhai Shah, Tanish Zaveri, Yogesh Trivedi (2020) Convex Polygon Maximization-Based Hyperspectral Endmember Extraction Algorithm

相关实践学习
1分钟部署经典小游戏
本场景介绍如何使用Serverless应用引擎SAE 1分钟快速部署经典小游戏。
SAE的功能与使用入门
欢迎来到《SAE的功能与使用入门》,本课程是“云原生Serverless Clouder认证“系列中的第三阶段。课程将向您介绍阿里云Serverless应用引擎(SAE)服务相关的概念、特性与使用方式。通过课程将带您逐步深入探索Serverless世界,借助SAE服务,即使没有丰富的云计算和IT经验,也能够让开发人员在实际业务场景中便捷的掌握如何构建和部署应用程序,快速拥抱Serverless架构,将精力聚焦在应用代码和业务逻辑的实现上。 学习完本课程后,您将能够: 掌握Serverless应用引擎(SAE)的基本概念与核心优势 了解Serverless应用引擎(SAE)的核心功能 掌握使用Serverless应用引擎(SAE)的开发和部署流程 了解Serverless应用引擎(SAE)的适用场景和最佳实践  
目录
打赏
0
0
0
0
78
分享
相关文章
基于GA遗传算法的斜拉桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现斜拉桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率ηq(0.95≤ηq≤1.05)的要求,目标是使ηq尽量接近1,同时减少加载车辆数量和布载耗时。程序通过迭代优化计算车辆位置、方向、类型及占用车道等参数,并展示适应度值收敛过程。测试版本为MATLAB2022A,包含核心代码与运行结果展示。优化模型综合考虑车辆总重量、间距及桥梁允许载荷密度等约束条件,确保布载方案科学合理。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等