基于凸多边形最大化的高光谱端体提取算法(Matlab代码实现)

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 基于凸多边形最大化的高光谱端体提取算法(Matlab代码实现)

💥1 概述


从高光谱图像中提取纯端体是目标检测、分类和解混应用中非常重要的步骤。利用凸几何的概念,提出了一种新的端部提取算法。该算法使用凸多边形最大化来确定一个凸集,该凸集根据测量员的公式给出最大的凸多边形面积。所提算法的并行实现有助于找到更有效的独特像素。通过合成数据证明了所提算法在存在噪声时的鲁棒性。利用真实高光谱数据进行的仿真结果表明,所提算法将光谱角度误差(SAE)和光谱信息发散误差(SID)降低了2.4–8.8%。所提算法在丰度映射中的有效性也使用均方根误差(RMSE)进行了验证。所提算法的RMSE也提高了1.7–7.6%。


📚2 运行结果

部分代码:

%% demo_CPM
clc;
close all;
clear all;
addpath('../data');
%% Image Read
s=load('Cuprite.mat');  % link for data source : https://rslab.ut.ac.ir/data
p=s.nRow;
q=s.nCol;
Bands=188;
Y=s.Y;
x=hyperConvert3d(Y,p,q,Bands);
%% Virtual Dimension
VD=12;
%% CPM algorithm
[endmemberindex] = CPM(Y,VD);
endmemberindex_CPM=change_index(endmemberindex,p,q);
%% VCA algorithm
[U_VCA,e_index,snrEstimate]=hyperVca(Y,VD);
endmemberindex_VCA=change_index(e_index,p,q);    
%% gt compare
t1=load('groundTruth_Cuprite_nEnd12.mat');
gt=t1.M;
n1=gt(3:103,:);
n2=gt(114:147,:);
n3=gt(168:220,:);
gt=[n1;n2;n3];
[gt_m,gt_n]=size(gt);
for i=1:gt_n
    for j=1:Bands
        extracted_VCA(j,i)=x(endmemberindex_VCA(i,1),endmemberindex_VCA(i,2),j);
        extracted_CPM(j,i)=x(endmemberindex_CPM(i,1),endmemberindex_CPM(i,2),j);
    end
end
%% SAM Calculation
ex_n=gt_n;
store_VCA=[0,0];
store_CPM=[0,0];
sam_VCA=0;
sam_CPM=0;
sam_total_VCA=0;
sam_total_CPM=0;
for i=1:gt_n
    for j=1:ex_n
        Mat_SAM_CPM(i,j)=real(acos(dot(gt(:,i),extracted_CPM(:,j))/(norm(gt(:,i)*norm(extracted_CPM(:,j))))));
        Mat_SAM_VCA(i,j)=real(acos(dot(gt(:,i),extracted_VCA(:,j))/(norm(gt(:,i)*norm(extracted_VCA(:,j))))));
    end
end
for i=1:gt_n
    %CPM
    [max_value1,mrow]=min(Mat_SAM_CPM);
    [max_value,col_CPM]=min(max_value1);
    sam_total_CPM=sam_total_CPM+max_value;
    sam_CPM=[sam_CPM;max_value];
    row_CPM=mrow(col_CPM);
    s1=[row_CPM,col_CPM];
    store_CPM=[store_CPM;s1];
    save_CPM(row_CPM)=max_value;
    Mat_SAM_CPM(row_CPM,:)=[100*ones];
    Mat_SAM_CPM(:,col_CPM)=[100*ones];
    %VCA
    [max_value1,mrow]=min(Mat_SAM_VCA);
    [max_value,col_VCA]=min(max_value1);
    sam_total_VCA=sam_total_VCA+max_value;
    sam_VCA=[sam_VCA;max_value];
    row_VCA=mrow(col_VCA);
    s1=[row_VCA,col_VCA];
    store_VCA=[store_VCA;s1];
    save_VCA(row_VCA)=max_value;
    Mat_SAM_VCA(row_VCA,:)=[100*ones];
    Mat_SAM_VCA(:,col_VCA)=[100*ones];
end
rms_sae=[rms(save_CPM);
    rms(save_VCA)];
rms_sae = radtodeg(rms_sae);
disp('RMSSAE of VCA');
disp(rms_sae(2));
disp('RMSSAE of CPM');
disp(rms_sae(1));

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Dharambhai Shah, Tanish Zaveri, Yogesh Trivedi (2020) Convex Polygon Maximization-Based Hyperspectral Endmember Extraction Algorithm

相关实践学习
1分钟部署经典小游戏
本场景介绍如何使用Serverless应用引擎SAE 1分钟快速部署经典小游戏。
SAE的功能与使用入门
欢迎来到《SAE的功能与使用入门》,本课程是“云原生Serverless Clouder认证“系列中的第三阶段。课程将向您介绍阿里云Serverless应用引擎(SAE)服务相关的概念、特性与使用方式。通过课程将带您逐步深入探索Serverless世界,借助SAE服务,即使没有丰富的云计算和IT经验,也能够让开发人员在实际业务场景中便捷的掌握如何构建和部署应用程序,快速拥抱Serverless架构,将精力聚焦在应用代码和业务逻辑的实现上。 学习完本课程后,您将能够: 掌握Serverless应用引擎(SAE)的基本概念与核心优势 了解Serverless应用引擎(SAE)的核心功能 掌握使用Serverless应用引擎(SAE)的开发和部署流程 了解Serverless应用引擎(SAE)的适用场景和最佳实践  
相关文章
|
5天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
6天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
4天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
3天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)