基于凸多边形最大化的高光谱端体提取算法(Matlab代码实现)

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 基于凸多边形最大化的高光谱端体提取算法(Matlab代码实现)

💥1 概述


从高光谱图像中提取纯端体是目标检测、分类和解混应用中非常重要的步骤。利用凸几何的概念,提出了一种新的端部提取算法。该算法使用凸多边形最大化来确定一个凸集,该凸集根据测量员的公式给出最大的凸多边形面积。所提算法的并行实现有助于找到更有效的独特像素。通过合成数据证明了所提算法在存在噪声时的鲁棒性。利用真实高光谱数据进行的仿真结果表明,所提算法将光谱角度误差(SAE)和光谱信息发散误差(SID)降低了2.4–8.8%。所提算法在丰度映射中的有效性也使用均方根误差(RMSE)进行了验证。所提算法的RMSE也提高了1.7–7.6%。


📚2 运行结果

部分代码:

%% demo_CPM
clc;
close all;
clear all;
addpath('../data');
%% Image Read
s=load('Cuprite.mat');  % link for data source : https://rslab.ut.ac.ir/data
p=s.nRow;
q=s.nCol;
Bands=188;
Y=s.Y;
x=hyperConvert3d(Y,p,q,Bands);
%% Virtual Dimension
VD=12;
%% CPM algorithm
[endmemberindex] = CPM(Y,VD);
endmemberindex_CPM=change_index(endmemberindex,p,q);
%% VCA algorithm
[U_VCA,e_index,snrEstimate]=hyperVca(Y,VD);
endmemberindex_VCA=change_index(e_index,p,q);    
%% gt compare
t1=load('groundTruth_Cuprite_nEnd12.mat');
gt=t1.M;
n1=gt(3:103,:);
n2=gt(114:147,:);
n3=gt(168:220,:);
gt=[n1;n2;n3];
[gt_m,gt_n]=size(gt);
for i=1:gt_n
    for j=1:Bands
        extracted_VCA(j,i)=x(endmemberindex_VCA(i,1),endmemberindex_VCA(i,2),j);
        extracted_CPM(j,i)=x(endmemberindex_CPM(i,1),endmemberindex_CPM(i,2),j);
    end
end
%% SAM Calculation
ex_n=gt_n;
store_VCA=[0,0];
store_CPM=[0,0];
sam_VCA=0;
sam_CPM=0;
sam_total_VCA=0;
sam_total_CPM=0;
for i=1:gt_n
    for j=1:ex_n
        Mat_SAM_CPM(i,j)=real(acos(dot(gt(:,i),extracted_CPM(:,j))/(norm(gt(:,i)*norm(extracted_CPM(:,j))))));
        Mat_SAM_VCA(i,j)=real(acos(dot(gt(:,i),extracted_VCA(:,j))/(norm(gt(:,i)*norm(extracted_VCA(:,j))))));
    end
end
for i=1:gt_n
    %CPM
    [max_value1,mrow]=min(Mat_SAM_CPM);
    [max_value,col_CPM]=min(max_value1);
    sam_total_CPM=sam_total_CPM+max_value;
    sam_CPM=[sam_CPM;max_value];
    row_CPM=mrow(col_CPM);
    s1=[row_CPM,col_CPM];
    store_CPM=[store_CPM;s1];
    save_CPM(row_CPM)=max_value;
    Mat_SAM_CPM(row_CPM,:)=[100*ones];
    Mat_SAM_CPM(:,col_CPM)=[100*ones];
    %VCA
    [max_value1,mrow]=min(Mat_SAM_VCA);
    [max_value,col_VCA]=min(max_value1);
    sam_total_VCA=sam_total_VCA+max_value;
    sam_VCA=[sam_VCA;max_value];
    row_VCA=mrow(col_VCA);
    s1=[row_VCA,col_VCA];
    store_VCA=[store_VCA;s1];
    save_VCA(row_VCA)=max_value;
    Mat_SAM_VCA(row_VCA,:)=[100*ones];
    Mat_SAM_VCA(:,col_VCA)=[100*ones];
end
rms_sae=[rms(save_CPM);
    rms(save_VCA)];
rms_sae = radtodeg(rms_sae);
disp('RMSSAE of VCA');
disp(rms_sae(2));
disp('RMSSAE of CPM');
disp(rms_sae(1));

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Dharambhai Shah, Tanish Zaveri, Yogesh Trivedi (2020) Convex Polygon Maximization-Based Hyperspectral Endmember Extraction Algorithm

相关实践学习
1分钟部署经典小游戏
本场景介绍如何使用Serverless应用引擎SAE 1分钟快速部署经典小游戏。
SAE的功能与使用入门
欢迎来到《SAE的功能与使用入门》,本课程是“云原生Serverless Clouder认证“系列中的第三阶段。课程将向您介绍阿里云Serverless应用引擎(SAE)服务相关的概念、特性与使用方式。通过课程将带您逐步深入探索Serverless世界,借助SAE服务,即使没有丰富的云计算和IT经验,也能够让开发人员在实际业务场景中便捷的掌握如何构建和部署应用程序,快速拥抱Serverless架构,将精力聚焦在应用代码和业务逻辑的实现上。 学习完本课程后,您将能够: 掌握Serverless应用引擎(SAE)的基本概念与核心优势 了解Serverless应用引擎(SAE)的核心功能 掌握使用Serverless应用引擎(SAE)的开发和部署流程 了解Serverless应用引擎(SAE)的适用场景和最佳实践  
相关文章
|
8天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
12天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
12天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
12天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
31 3
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
13天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
23天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。