常见的bug---3、没有启动metaStore和Hiveserver2服务导致在本机上的IDEA无法连接上虚拟机上的HIve

简介: 常见的bug---3、没有启动metaStore和Hiveserver2服务导致在本机上的IDEA无法连接上虚拟机上的HIve

问题描述

在IEDA连接虚拟机上的Hive报的

Exception in thread “main” org.apache.spark.sql.AnalysisException: org.apache.hadoop.hive.ql.metadata.HiveException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient

at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:110)

at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:223)

at org.apache.spark.sql.internal.SharedState.externalCatalogl z y c o m p u t e ( S h a r e d S t a t e . s c a l a : 150 ) a t o r g . a p a c h e . s p a r k . s q l . i n t e r n a l . S h a r e d S t a t e . e x t e r n a l C a t a l o g ( S h a r e d S t a t e . s c a l a : 140 ) a t o r g . a p a c h e . s p a r k . s q l . i n t e r n a l . S h a r e d S t a t e . g l o b a l T e m p V i e w M a n a g e r lzycompute(SharedState.scala:150) at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:140) at org.apache.spark.sql.internal.SharedState.globalTempViewManagerlzycompute(SharedState.scala:150)atorg.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:140)atorg.apache.spark.sql.internal.SharedState.globalTempViewManagerlzycompute(SharedState.scala:170)

at org.apache.spark.sql.internal.SharedState.globalTempViewManager(SharedState.scala:168)

at org.apache.spark.sql.hive.HiveSessionStateBuilder.a n o n f u n anonfunanonfuncatalog2 ( H i v e S e s s i o n S t a t e B u i l d e r . s c a l a : 70 ) a t o r g . a p a c h e . s p a r k . s q l . c a t a l y s t . c a t a l o g . S e s s i o n C a t a l o g . g l o b a l T e m p V i e w M a n a g e r 2(HiveSessionStateBuilder.scala:70) at org.apache.spark.sql.catalyst.catalog.SessionCatalog.globalTempViewManager2(HiveSessionStateBuilder.scala:70)atorg.apache.spark.sql.catalyst.catalog.SessionCatalog.globalTempViewManagerlzycompute(SessionCatalog.scala:122)

at org.apache.spark.sql.catalyst.catalog.SessionCatalog.globalTempViewManager(SessionCatalog.scala:122)

at org.apache.spark.sql.catalyst.catalog.SessionCatalog.listTables(SessionCatalog.scala:1031)

at org.apache.spark.sql.catalyst.catalog.SessionCatalog.listTables(SessionCatalog.scala:1017)

at org.apache.spark.sql.catalyst.catalog.SessionCatalog.listTables(SessionCatalog.scala:1009)

at org.apache.spark.sql.execution.datasources.v2.V2SessionCatalog.listTables(V2SessionCatalog.scala:57)

at org.apache.spark.sql.execution.datasources.v2.ShowTablesExec.run(ShowTablesExec.scala:40)

at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.resultl z y c o m p u t e ( V 2 C o m m a n d E x e c . s c a l a : 43 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . d a t a s o u r c e s . v 2. V 2 C o m m a n d E x e c . r e s u l t ( V 2 C o m m a n d E x e c . s c a l a : 43 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . d a t a s o u r c e s . v 2. V 2 C o m m a n d E x e c . e x e c u t e C o l l e c t ( V 2 C o m m a n d E x e c . s c a l a : 49 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . Q u e r y E x e c u t i o n lzycompute(V2CommandExec.scala:43) at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:43) at org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:49) at org.apache.spark.sql.execution.QueryExecutionlzycompute(V2CommandExec.scala:43)atorg.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:43)atorg.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:49)atorg.apache.spark.sql.execution.QueryExecutiona n o n f u n anonfunanonfuneagerlyExecuteCommands1. 1.1.anonfun$applyOrElse1 ( Q u e r y E x e c u t i o n . s c a l a : 98 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . S Q L E x e c u t i o n 1(QueryExecution.scala:98) at org.apache.spark.sql.execution.SQLExecution1(QueryExecution.scala:98)atorg.apache.spark.sql.execution.SQLExecution.a n o n f u n anonfunanonfunwithNewExecutionId6 ( S Q L E x e c u t i o n . s c a l a : 109 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . S Q L E x e c u t i o n 6(SQLExecution.scala:109) at org.apache.spark.sql.execution.SQLExecution6(SQLExecution.scala:109)atorg.apache.spark.sql.execution.SQLExecution.withSQLConfPropagated(SQLExecution.scala:169)

at org.apache.spark.sql.execution.SQLExecution. ..anonfun$withNewExecutionId1 ( S Q L E x e c u t i o n . s c a l a : 95 ) a t o r g . a p a c h e . s p a r k . s q l . S p a r k S e s s i o n . w i t h A c t i v e ( S p a r k S e s s i o n . s c a l a : 779 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . S Q L E x e c u t i o n 1(SQLExecution.scala:95) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779) at org.apache.spark.sql.execution.SQLExecution1(SQLExecution.scala:95)atorg.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)atorg.apache.spark.sql.execution.SQLExecution.withNewExecutionId(SQLExecution.scala:64)

at org.apache.spark.sql.execution.QueryExecutionKaTeX parse error: Can't use function '$' in math mode at position 8: anonfun$̲eagerlyExecuteC…anonfun$eagerlyExecuteCommands1. a p p l y O r E l s e ( Q u e r y E x e c u t i o n . s c a l a : 94 ) a t o r g . a p a c h e . s p a r k . s q l . c a t a l y s t . t r e e s . T r e e N o d e . 1.applyOrElse(QueryExecution.scala:94) at org.apache.spark.sql.catalyst.trees.TreeNode.1.applyOrElse(QueryExecution.scala:94)atorg.apache.spark.sql.catalyst.trees.TreeNode.anonfun$transformDownWithPruning1 ( T r e e N o d e . s c a l a : 584 ) a t o r g . a p a c h e . s p a r k . s q l . c a t a l y s t . t r e e s . C u r r e n t O r i g i n 1(TreeNode.scala:584) at org.apache.spark.sql.catalyst.trees.CurrentOrigin1(TreeNode.scala:584)atorg.apache.spark.sql.catalyst.trees.CurrentOrigin.withOrigin(TreeNode.scala:176)

at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:584)

at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.orga p a c h e apacheapachesparks q l sqlsqlcatalystp l a n s plansplanslogicalA n a l y s i s H e l p e r AnalysisHelperAnalysisHelpers u p e r supersupertransformDownWithPruning(LogicalPlan.scala:30)

at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)

at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning( A n a l y s i s H e l p e r . s c a l a : 263 ) a t o r g . a p a c h e . s p a r k . s q l . c a t a l y s t . p l a n s . l o g i c a l . L o g i c a l P l a n . t r a n s f o r m D o w n W i t h P r u n i n g ( L o g i c a l P l a n . s c a l a : 30 ) a t o r g . a p a c h e . s p a r k . s q l . c a t a l y s t . p l a n s . l o g i c a l . L o g i c a l P l a n . t r a n s f o r m D o w n W i t h P r u n i n g ( L o g i c a l P l a n . s c a l a : 30 ) a t o r g . a p a c h e . s p a r k . s q l . c a t a l y s t . t r e e s . T r e e N o d e . t r a n s f o r m D o w n ( T r e e N o d e . s c a l a : 560 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . Q u e r y E x e c u t i o n . e a g e r l y E x e c u t e C o m m a n d s ( Q u e r y E x e c u t i o n . s c a l a : 94 ) a t o r g . a p a c h e . s p a r k . s q l . e x e c u t i o n . Q u e r y E x e c u t i o n . c o m m a n d E x e c u t e d (AnalysisHelper.scala:263) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30) at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:560) at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94) at org.apache.spark.sql.execution.QueryExecution.commandExecuted(AnalysisHelper.scala:263)atorg.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)atorg.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)atorg.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:560)atorg.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:94)atorg.apache.spark.sql.execution.QueryExecution.commandExecutedlzycompute(QueryExecution.scala:81)

at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:79)

at org.apache.spark.sql.Dataset.(Dataset.scala:220)

at org.apache.spark.sql.Dataset. ..anonfun$ofRows2 ( D a t a s e t . s c a l a : 100 ) a t o r g . a p a c h e . s p a r k . s q l . S p a r k S e s s i o n . w i t h A c t i v e ( S p a r k S e s s i o n . s c a l a : 779 ) a t o r g . a p a c h e . s p a r k . s q l . D a t a s e t 2(Dataset.scala:100) at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779) at org.apache.spark.sql.Dataset2(Dataset.scala:100)atorg.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)atorg.apache.spark.sql.Dataset.ofRows(Dataset.scala:97)

at org.apache.spark.sql.SparkSession.a n o n f u n anonfunanonfunsql$1(SparkSession.scala:622)

at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:779)

at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:617)

at inputandoutput.Test05_Hive.main(Test05_Hive.java:27)

原因分析:

看报的异常是org.apache.hadoop.hive.ql.metadata.HiveException,说明是我Hive的metastore服务的问题,应该是启动,然后我又因为是在本机连接虚拟机中的Hive,所以应该还要开启Hiveserver2这个服务

解决方案:

开启metastore服务和Hiveserver2服务即可

开启脚本:

vim hiveservices.sh 

插入如下内容:

#!/bin/bash
HIVE_LOG_DIR=$HIVE_HOME/logs
if [ ! -d $HIVE_LOG_DIR ]
then
        mkdir -p $HIVE_LOG_DIR
fi
#检查进程是否运行正常,参数1为进程名,参数2为进程端口
function check_process()
{
    pid=$(ps -ef 2>/dev/null | grep -v grep | grep -i $1 | awk '{print $2}')
    ppid=$(netstat -nltp 2>/dev/null | grep $2 | awk '{print $7}' | cut -d '/' -f 1)
    echo $pid
    [[ "$pid" =~ "$ppid" ]] && [ "$ppid" ] && return 0 || return 1
}
function hive_start()
{
    metapid=$(check_process HiveMetastore 9083)
    cmd="nohup hive --service metastore >$HIVE_LOG_DIR/metastore.log 2>&1 &"
    [ -z "$metapid" ] && eval $cmd || echo "Metastroe服务已启动"
    server2pid=$(check_process HiveServer2 10000)
    cmd="nohup hive --service hiveserver2 >$HIVE_LOG_DIR/hiveServer2.log 2>&1 &"
    [ -z "$server2pid" ] && eval $cmd || echo "HiveServer2服务已启动"
}
function hive_stop()
{
metapid=$(check_process HiveMetastore 9083)
    [ "$metapid" ] && kill $metapid || echo "Metastore服务未启动"
    server2pid=$(check_process HiveServer2 10000)
    [ "$server2pid" ] && kill $server2pid || echo "HiveServer2服务未启动"
}
case $1 in
"start")
    hive_start
    ;;
"stop")
    hive_stop
    ;;
"restart")
    hive_stop
    sleep 2
    hive_start
    ;;
"status")
    check_process HiveMetastore 9083 >/dev/null && echo "Metastore服务运行正常" || echo "Metastore服务运行异常"
    check_process HiveServer2 10000 >/dev/null && echo "HiveServer2服务运行正常" || echo "HiveServer2服务运行异常"
    ;;
*)
    echo Invalid Args!
    echo 'Usage: '$(basename $0)' start|stop|restart|status'
    ;;
esac


相关文章
|
5月前
|
Ubuntu Shell 网络安全
安装了ubuntu虚拟机后发现shell无法连接 ubuntu开启ssh连接
【8月更文挑战第23天】安装了ubuntu虚拟机后发现shell无法连接
374 6
|
3月前
|
SQL 存储 数据管理
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
Hadoop-15-Hive 元数据管理与存储 Metadata 内嵌模式 本地模式 远程模式 集群规划配置 启动服务 3节点云服务器实测
67 2
|
5月前
|
应用服务中间件 nginx Docker
本地通过域名访问虚拟机上nginx的服务、搭建域名访问环境一(反向代理配置)
这篇文章介绍了如何通过域名在本地访问虚拟机上的nginx服务,包括创建nginx容器、修改配置文件、修改本地host文件以及进行访问测试的详细步骤。文章提供了具体的Docker命令来创建并配置nginx容器,展示了配置文件的修改示例,说明了如何在本地系统的hosts文件中添加虚拟机IP和自定义域名,以及如何通过浏览器进行测试访问。
本地通过域名访问虚拟机上nginx的服务、搭建域名访问环境一(反向代理配置)
|
5月前
|
Linux 虚拟化
成功解决:Xshell 无法连接虚拟机。如何使用Xshell连接CentOS7虚拟机(详细步骤过程)
这篇文章提供了使用Xshell连接CentOS 7虚拟机的详细步骤,包括编辑VMware的网络设置以启用桥接模式、检查个人电脑适配器虚拟网络的连接情况,以及通过Xshell新建并建立连接的过程。文章还提到了在虚拟机可以访问外网的情况下成功连接的后语,暗示了网络配置的重要性。
成功解决:Xshell 无法连接虚拟机。如何使用Xshell连接CentOS7虚拟机(详细步骤过程)
|
5月前
|
NoSQL Java Linux
springboot+redis+虚拟机 springboot连接linux虚拟机中的redis服务
该博客文章介绍了如何在Spring Boot项目中通过配置和代码实现连接运行在Linux虚拟机上的Redis服务,并提供了详细的步骤和测试结果截图。
springboot+redis+虚拟机 springboot连接linux虚拟机中的redis服务
|
6月前
|
微服务
idea 配置 service 服务,多模块同时启动
idea 配置 service 服务,多模块同时启动
960 7
|
6月前
|
存储 安全 虚拟化
虚拟化数据恢复—虚拟机数据丢失导致Hyper-V服务瘫痪数据恢复
虚拟化数据恢复环境: 一台服务器上部署的Hyper-V虚拟化平台,虚拟机的硬盘文件和配置文件放在一台某品牌MD3200存储中。该存储中有一组由4块硬盘组建的raid5磁盘阵列,还有一块大容量硬盘存放虚拟机数据文件的备份。 虚拟化故障: MD3200存储中虚拟机数据文件丢失,导致Hyper-V服务瘫痪,虚拟机无法使用。
虚拟化数据恢复—虚拟机数据丢失导致Hyper-V服务瘫痪数据恢复
|
5月前
|
安全 Windows
【Azure 环境】Azure 的PaaS服务如果涉及到安全漏洞问题后,我们如何确认所用服务的实例(VM:虚拟机)的操作系统已修复该补丁呢?
【Azure 环境】Azure 的PaaS服务如果涉及到安全漏洞问题后,我们如何确认所用服务的实例(VM:虚拟机)的操作系统已修复该补丁呢?
|
7月前
|
存储 开发框架 安全
虚拟机磁盘&UAC&服务和注册表&int文件
虚拟机磁盘&UAC&服务和注册表&int文件
|
6月前
|
Java
idea启动java服务报错OutOfMemoryError: GC overhead limit exceeded解决方法
idea启动java服务报错OutOfMemoryError: GC overhead limit exceeded解决方法
1047 0