如何画应用架构图

简介: 如何画应用架构图

在上一节有了业务架构的基础之上,当我们需要落地具体的技术方案时,此时就需要技术人员开始考虑技术架构了。技术架构是应接应用架构的技术需求,并根据识别的技术需求,进行技术选项,把各个关键技术和技术之间的关系描述清楚。

基础结构解决的主要问题包括:如何进行技术层面的分层、开发框架的选择、开发语言的选择、涉及非功能性需求的技术选择。由于应用架构体系是分层的,那么对应的技术架构体系自然也是分层的。大的分层有微服务架构分层模型,小的则是单个应用的技术分层框架。大的技术体系考虑清楚后,剩下问题就是根据实际业务考虑选择具体的技术点。各个技术点的分析、方案选择,最终形成关键技术清单,关键技术清单应考虑架构本身的分层逻辑,最终形成一个完整的技术架构图。

简而言之,技术架构试讲产品需求转变为技术实现的过程。

单体应用架构

单体应用架构一般是比较传统的分为4层:数据层(Data Layer)、应用逻辑层(Business Layer)、表现层(Presentation Layer)和基础通用层(Common Layer)。

展现层

展现层是整个应用面向用户的入口,用户通过展现层实现与系统的交互。展现层为用户提供系统功能的操作、系统数据的展现。展现层按照面向的用户类型提供不同的交互服务。例如在业务场景中,用户有实操层用户、管理层用户、决策层用户。针对不同层级的用户,系统所提供的功能是不相同:

  • 面向实操层用户,提供的是对系统的操作功能,满足业务日常运营。往往更多的是执行具体操作。
  • 面向管理层用户,满足管理者的日常管理需求,通常提供经营数据、日常管理数据、团队业务数据等等。通过数据分析,改善日常运营的流程。
  • 面向决策层用户,这一层的用户不需要太细的数据,为其提供企业的经营诊断数据和报告,辅助决策支持。

业务层

业务层是应用为解决业务需求,按照产品架构中的功能模块进行细化。业务层是对将产品层从粗到细的分解过程。这个过程是对业务的细化过程,把项目要交付的模块细分到最基本的单元。最基本单元是实现日常业务操作的最细粒度的功能点。由此,我们能够得到实现业务逻辑的全功能结构。

数据层

数据层按照应用的数据模型分别进行存储。这里的存储介质包含关系型数据库、NoSQL、分布式文件系统。

基础层

通用基础层是为系统提供通用能力的中间件,比如流程引擎、消息中间件、缓存、搜索引擎等等。这些中间件和业务是无相关性的,提供的是通用的基础技术能力。

基于上述分析,我们可以得到一个如下单体应用的技术架构:

分布式应用架构

分布式应用架构图实质是产品内部所有应用在分布式环境下的调用关系图。各应用间通过服务的形式相互调用,这是典型的 SOA 架构。在应用架构图中,SOA 架构中的服务注册、服务治理、服务发现这些 RPC 框架的基础平台功能不用在应用架构中体现。

应用架构图的重点是体现应用之间的逻辑关系和通信关系,体现产品的内部关系和外部关系。内部关系是产品内各应用的调用关系;外部关系展现的是产品与外部系统间的调用关系。将应用的内外关系呈现在应用架构中,产品在整个业务中的定位和影响将变得清晰。

应用间调用关系

在产品内部的各子系统之间,为了解决业务需求,通过应用之间的服务调用或者异步消息调用产生数据关系。通过产品架构图中得到的应用系统划分,按照系统间的调用关系,形成内部应用的集成架构图。在应用集成架构图中,需要标注调用链路中的业务含义,清楚的标注应用之间发生的业务关系。

外部系统调用关系

数据输入做为产品的业务数据来源,很大部分是外部系统提供。在应用架构图中,按照业务属性、来源关系进行对外部系统进行归类,并将外部的来源系统纳入整个应用架构中。我们知道计算机系统中,数据输入和数据输出是作为一个整体。应用架构中除了输入系统,输出系统做为整个产品的一部分,需要纳入到应用架构图中。

明确应用调用边界

应用边界对于产品的定位、产品的设计有很重要的影响。在应用架构中需要通过不同颜色的标注,来确定产品与外部系统的边界。通过不同颜色标注外部来源系统、内部应用、应用依赖系统、输出系统。为后续的规划、发展提供基础。

目录
相关文章
|
4月前
|
人工智能 自然语言处理 开发工具
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
本文介绍统一多模态 Transformer(UMT)在跨模态表示学习中的应用与优化,涵盖模型架构、实现细节与实验效果,探讨其在图文检索、图像生成等任务中的卓越性能。
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
|
3月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
667 3
|
1月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
190 6
|
6月前
|
人工智能 监控 安全
NTP网络子钟的技术架构与行业应用解析
在数字化与智能化时代,时间同步精度至关重要。西安同步电子科技有限公司专注时间频率领域,以“同步天下”品牌提供可靠解决方案。其明星产品SYN6109型NTP网络子钟基于网络时间协议,实现高精度时间同步,广泛应用于考场、医院、智慧场景等领域。公司坚持技术创新,产品通过权威认证,未来将结合5G、物联网等技术推动行业进步,引领精准时间管理新时代。
|
5月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
311 0
|
2月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
2月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
391 0
|
1月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
3月前
|
Web App开发 Linux 虚拟化
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
236 0
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
|
5月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
4175 9
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性

热门文章

最新文章