5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)(一)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 5、DataX(DataX简介、DataX架构原理、DataX部署、使用、同步MySQL数据到HDFS、同步HDFS数据到MySQL)(一)

1、DataX简介

1.1 DataX概述

DataX 是阿里巴巴开源的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。

源码地址:https://github.com/alibaba/DataX

1.2 DataX支持的数据源

DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入,目前支持数据如下图。

3e81c096113b4d7e893139b553bba6c9.png

2、DataX架构原理

2.1 DataX设计理念

为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。

9c1a97784c794c93a031bb39c928f6f7.png


2.2 DataX框架设计

DataX本身作为离线数据同步框架,采用Framework + plugin架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。

Reader:数据采集模块,负责采集数据源的数据,将数据发送给Framework。

Writer:数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。

Framework:用于连接Reader和Writer,作为两者的数据传输通道,并处理缓存,流控,并发,数据转换等核心技术问题。

2.3 DataX运行流程

下面用一个DataX作业生命周期的时序图说明DataX的运行流程、核心概念以及每个概念之间的关系。

b6297dce78984747b4113521d5151ba5.png

2.4 DataX调度决策思路

举例来说,用户提交了一个DataX作业,并且配置了总的并发度为20,目的是对一个有100张分表的mysql数据源进行同步。DataX的调度决策思路是:

1)DataX Job根据分库分表切分策略,将同步工作分成100个Task。

2)根据配置的总的并发度20,以及每个Task Group的并发度5,DataX计算共需要分配4个TaskGroup。

3)4个TaskGroup平分100个Task,每一个TaskGroup负责运行25个Task。

2.5 DataX和Sqoop对比

7eac5b4580e14edd9d14533890211af7.png

3、DataX部署


1、下载DataX安装包并上传到hadoop102的/opt/software

下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz

2、解压datax.tar.gz到/opt/module

 tar -zxvf datax.tar.gz -C /opt/module/

3、自检,执行如下命令

python /opt/module/datax/bin/datax.py /opt/module/datax/job/job.json

4、出现如下内容,则表明安装成功

109094ad78c149f78c27819d0de1c0c6.png

4、DataX使用

4.1 DataX使用概述

4.1.1 DataX任务提交命令

Datax的使用十分简单,用户只需要根据自己同步数据的数据源和目的地选择相应的Reader和Writer,并将Reader和Writer的信息配置在一个json文件中,然后执行如下命令提交数据同步任务即可。

 python bin/datax.py path/to/your/job.json

4.1.2 DataX配置文件格式

可以使用如下命名查看DataX配置文件模板。

python bin/datax.py -r mysqlreader -w hdfswriter

配置文件模板如下,json最外层是一个job,job包含setting和content两部分,其中setting用于对整个job进行配置,content用户配置数据源和目的地。

19aabfbec4be4f119b5b2d19791a3ff6.png

4.2 同步MySQL数据到HDFS案例

案例要求:同步gmall数据库中base_province表数据到HDFS的/base_province目录

需求分析:要实现该功能,需选用MySQLReader和HDFSWriter,MySQLReader具有两种模式分别是TableMode和QuerySQLMode,前者使用table,column,where等属性声明需要同步的数据;后者使用一条SQL查询语句声明需要同步的数据。

下面分别使用两种模式进行演示。

4.2.1 MySQLReader之TableMode

1、编写配置文件

(1)创建配置文件base_province.json

vim /opt/module/datax/job/base_province.json

(2)配置文件内容如下

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "column": [
                            "id",
                            "name",
                            "region_id",
                            "area_code",
                            "iso_code",
                            "iso_3166_2"
                        ],
                        "where": "id>=3",
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "table": [
                                    "base_province"
                                ]
                            }
                        ],
                        "password": "000000",
                        "splitPk": "",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}

2、配置文件说明

(1)Reader参数说明

035bc7b0dd984f14ac96f45b9fd07467.png

(2)Writer参数说明


a50f54fc40654650a3004f46c7b88a50.png

注意事项:

HFDS Writer并未提供nullFormat参数:也就是用户并不能自定义null值写到HFDS文件中的存储格式。默认情况下,HFDS Writer会将null值存储为空字符串(‘’),而Hive默认的null值存储格式为\N。所以后期将DataX同步的文件导入Hive表就会出现问题。

(3)Setting参数说明


6eb7f3e6f2b74e70938a04cc871e330a.png

3、提交任务

(1)在HDFS创建/base_province目录

使用DataX向HDFS同步数据时,需确保目标路径已存在

hadoop fs -mkdir /base_province

(2)进入DataX根目录

(3)执行如下命令

python bin/datax.py job/base_province.json

4、查看结果

(1)DataX打印日志

4daa45ec068a45ef9c91bc02f1f4c2d4.png

(2)查看HDFS文件

hadoop fs -cat /base_province/* | zcat
4.2.2 MySQLReader之QuerySQLMode

1、编写配置文件

(1)修改配置文件base_province.json

(2)配置文件内容如下

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader",
                    "parameter": {
                        "connection": [
                            {
                                "jdbcUrl": [
                                    "jdbc:mysql://hadoop102:3306/gmall"
                                ],
                                "querySql": [
                                    "select id,name,region_id,area_code,iso_code,iso_3166_2 from base_province where id>=3"
                                ]
                            }
                        ],
                        "password": "000000",
                        "username": "root"
                    }
                },
                "writer": {
                    "name": "hdfswriter",
                    "parameter": {
                        "column": [
                            {
                                "name": "id",
                                "type": "bigint"
                            },
                            {
                                "name": "name",
                                "type": "string"
                            },
                            {
                                "name": "region_id",
                                "type": "string"
                            },
                            {
                                "name": "area_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_code",
                                "type": "string"
                            },
                            {
                                "name": "iso_3166_2",
                                "type": "string"
                            }
                        ],
                        "compress": "gzip",
                        "defaultFS": "hdfs://hadoop102:8020",
                        "fieldDelimiter": "\t",
                        "fileName": "base_province",
                        "fileType": "text",
                        "path": "/base_province",
                        "writeMode": "append"
                    }
                }
            }
        ],
        "setting": {
            "speed": {
                "channel": 1
            }
        }
    }
}


目录
打赏
0
3
0
0
60
分享
相关文章
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
105 14
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
新闻聚合项目:多源异构数据的采集与存储架构
本文探讨了新闻聚合项目中数据采集的技术挑战与解决方案,指出单纯依赖抓取技术存在局限性。通过代理IP、Cookie和User-Agent的精细设置,可有效提高采集策略;但多源异构数据的清洗与存储同样关键,需结合智能化算法处理语义差异。正反方围绕技术手段的有效性和局限性展开讨论,最终强调综合运用代理技术与智能数据处理的重要性。未来,随着机器学习和自然语言处理的发展,新闻聚合将实现更高效的热点捕捉与信息传播。附带的代码示例展示了如何从多个中文新闻网站抓取数据并统计热点关键词。
新闻聚合项目:多源异构数据的采集与存储架构
十万订单每秒热点数据架构优化实践深度解析
【11月更文挑战第20天】随着互联网技术的飞速发展,电子商务平台在高峰时段需要处理海量订单,这对系统的性能、稳定性和扩展性提出了极高的要求。尤其是在“双十一”、“618”等大型促销活动中,每秒需要处理数万甚至数十万笔订单,这对系统的热点数据处理能力构成了严峻挑战。本文将深入探讨如何优化架构以应对每秒十万订单级别的热点数据处理,从历史背景、功能点、业务场景、底层原理以及使用Java模拟示例等多个维度进行剖析。
96 8
AllData数据中台架构全览:数据时代的智慧中枢
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
MySQL的架构与SQL语句执行过程
MySQL架构分为Server层和存储引擎层,具有高度灵活性和可扩展性。Server层包括连接器、查询缓存(MySQL 8.0已移除)、分析器、优化器和执行器,负责处理SQL语句;存储引擎层负责数据的存储和读取,常见引擎有InnoDB、MyISAM和Memory。SQL执行过程涉及连接、解析、优化、执行和结果返回等步骤,本文详细讲解了一条SQL语句的完整执行过程。
42 3
|
24天前
|
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
23 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨

热门文章

最新文章