2、电商数仓(业务数据采集平台)电商业务流程、电商常识、电商系统表结构、业务数据模拟、业务数据采集模块(一)

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 2、电商数仓(业务数据采集平台)电商业务流程、电商常识、电商系统表结构、业务数据模拟、业务数据采集模块(一)

1、电商业务简介

1.1 电商业务流程

电商的业务流程可以以一个普通用户的浏览足迹为例进行说明,用户点开电商首页开始浏览,可能会通过分类查询也可能通过全文搜索寻找自己中意的商品,这些商品无疑都是存储在后台的管理系统中的。

当用户寻找到自己中意的商品,可能会想要购买,将商品添加到购物车后发现需要登录,登录后对商品进行结算,这时候购物车的管理和商品订单信息的生成都会对业务数据库产生影响,会生成相应的订单数据和支付数据。

订单正式生成之后,还会对订单进行跟踪处理,直到订单全部完成。

电商的主要业务流程包括用户前台浏览商品时的商品详情的管理,用户商品加入购物车进行支付时用户个人中心&支付服务的管理,用户支付完成后订单后台服务的管理,这些流程涉及到了十几个甚至几十个业务数据表,甚至更多。

d220f5a385064ac39d2916c306c271d6.png

1.2 电商常识

1.2.1 SKU和SPU

SKU = Stock Keeping Unit(库存量基本单位)。现在已经被引申为产品统一编号的简称,每种产品均对应有唯一的SKU号。

SPU(Standard Product Unit):是商品信息聚合的最小单位,是一组可复用、易检索的标准化信息集合。

SPU表示一类商品。同一SPU的商品可以共用商品图片、海报、销售属性等。

1.2.2 平台属性和销售属性

1、平台属性

1cc4a89b22fe49a794da53c5a1c60a8d.png

2、销售属性


d4cc2af552a3471dbc3bd3f39c81bd1c.png

2、业务数据介绍

2.1 电商系统表结构

以下为本电商数仓系统涉及到的业务数据表结构关系。这34个表以订单表、用户表、SKU商品表、活动表和优惠券表为中心,延伸出了优惠券领用表、支付流水表、活动订单表、订单详情表、订单状态表、商品评论表、编码字典表退单表、SPU商品表等,用户表提供用户的详细信息,支付流水表提供该订单的支付详情,订单详情表提供订单的商品数量等情况,商品表给订单详情表提供商品的详细信息。本次讲解以此34个表为例,实际项目中,业务数据库中表格远远不止这些。

2.1.1 活动信息表(activity_info)


b6ceb68675a2445f818a46e82b207ce8.png

2.1.2 活动规则表(activity_rule)

32135e94a07b4a2b925d68e45b6e6c3d.png

2.1.3 活动商品关联表(activity_sku)

b4c87eddfb464a5d85185aa99d446f26.png

2.1.4 平台属性表(base_attr_info)


d1a453f8941d44e68ab9af9a57ab82f1.png

2.1.5 平台属性值表(base_attr_value)


ecc9274cee964abca7dd24f208e33e0a.png

2.1.6 一级分类表(base_category1)


467fbb02a7854a64918d06f8b3b6d719.png

2.1.7 二级分类表(base_category2)


e43e0b17df064ef5bdf70c9d9a867cde.png

2.1.8 三级分类表(base_category3)

f08f8d2f04e14bdb9a884a94ce4300ec.png

2.1.9 字典表(base_dic)


b52cbc72c5704eb98b688690127b7fe7.png

2.1.10 省份表(base_province)


369481d1d9224b0cbbf5c121ce41165a.png

2.1.11 地区表(base_region)


566f5449455247c38c8610a608457c11.png

2.1.12 品牌表(base_trademark)

1dc788e800074d579a46e75f0f6e47f6.png

2.1.13 购物车表(cart_info)


5565dbc3232248f0971dbb4b7f6d6ed8.png

2.1.14 评价表(comment_info)

80c2e1881b6b4fbf85934465586a9b51.png

2.1.15 优惠券信息表(coupon_info)


1c891d56d7314ff59e29731d54f5bf17.png

2.1.16 优惠券优惠范围表(coupon_range)


69c9d472a2924ea1a26af2debfb9c0c8.png


2.1.17 优惠券领用表(coupon_use)


16ed56f3fb3c4d2eb9ee6a6b8ff03660.png


2.1.18 收藏表(favor_info)


30b29aa7362d48a4b1a85bb03d889d75.png

2.1.19 订单明细表(order_detail)

886e4a0b94c646a5a35fea8d28c831fe.png

2.1.20 订单明细活动关联表(order_detail_activity)


4fc68db3b3624303aad4e81f0b9e0fc8.png

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
3月前
|
存储 消息中间件 Java
抖音集团电商流量实时数仓建设实践
本文基于抖音集团电商数据工程师姚遥在Flink Forward Asia 2024的分享,围绕电商流量数据处理展开。内容涵盖业务挑战、电商流量建模架构、流批一体实践、大流量任务调优及总结展望五个部分。通过数据建模与优化,实现效率、质量、成本和稳定性全面提升,数据质量达99%以上,任务性能提升70%。未来将聚焦自动化、低代码化与成本优化,探索更高效的流批一体化方案。
231 12
抖音集团电商流量实时数仓建设实践
|
4月前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
|
4月前
|
SQL 分布式计算 数据处理
【重磅发布】AllData数据中台核心功能:湖仓平台中心
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
5月前
|
SQL 消息中间件 Kafka
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
958 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
5月前
|
存储 SQL 大数据
【重磅发布】AllData数据中台核心功能:湖仓一体化平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
【重磅发布】AllData数据中台核心功能:湖仓一体化平台
|
5月前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
481 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
5月前
|
存储 SQL 数据挖掘
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
湖仓一体架构融合了数据湖的低成本、高扩展性,以及数据仓库的高性能、强数据治理能力,高效应对大数据时代的挑战。为助力企业实现湖仓一体的建设,Apache Doris 提出了数据无界和湖仓无界核心理念,并结合自身特性,助力企业加速从 0 到 1 构建湖仓体系,降低转型过程中的风险和成本。本文将对湖仓一体演进及 Apache Doris 湖仓一体方案进行介绍。
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
|
4月前
|
SQL 消息中间件 Serverless
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
117 4
|
4月前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
297 2
|
6月前
|
SQL 存储 JSON
实时数仓 Hologres 产品介绍:一体化实时湖仓平台
本次方案的主题是实时数仓 Hologres 产品介绍:一体化实时湖仓平台,介绍了 Hologres 湖仓存储一体,多模式计算一体、分析服务一体和 Data+AI 一体四方面一体化场景,并对其运维监控方面及客户案例进行一定讲解。 1. Hologres :面向未来的一体化实时湖仓 2. 运维监控 3. 客户案例 4. 总结
429 14

热门文章

最新文章