[深度学习实战]基于PyTorch的深度学习实战(中)[线性回归、numpy矩阵的保存、模型的保存和导入、卷积层、池化层](二)

简介: 笔记

5.2 Conv1d

  conv1d 是一维卷积,它和 conv2d 的区别在于只对宽度进行卷积,对高度不卷积。


5.2.1 函数定义

torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=

5.2.2 参数说明

 input:输入的Tensor数据,格式为 (batch,channels,W),三维数组,第一维度是样本数量,第二维度是通道数或者记录数,三维度是宽度。

 weight:卷积核权重,也就是卷积核本身。是一个三维数组,(out_channels, in_channels/groups, kW)。 out_channels 是卷积核输出层的神经元个数,也就是这层有多少个卷积核;in_channels 是输入通道数;kW 是卷积核的宽度。

 bias:位移参数,可选项,一般也不用管。

 stride:滑动窗口,默认为 1,指每次卷积对原数据滑动 1 个单元格。

 padding:是否对输入数据填充 0。Padding 可以将输入数据的区域改造成是卷积核大小的整数倍,这样对不满足卷积核大小的部分数据就不会忽略了。通过 padding 参数指定填充区域的高度和宽度,默认 0(就是填充区域为0,不填充的意思)。

 ilation:卷积核之间的空格,默认 1。

 groups:将输入数据分组,通常不用管这个参数,没有太大意义。


5.2.3 测试代码

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
print("conv1d sample")
a=range(16)
x = Variable(torch.Tensor(a))
x=x.view(1,1,16)
print("x variable:", x)
b=torch.ones(3)
b[0]=0.1
b[1]=0.2
b[2]=0.3
weights = Variable(b)
weights=weights.view(1,1,3)
print ("weights:",weights)
y=F.conv1d(x, weights, padding=0)
print ("y:",y)


5.2.4 最终结果

10.png

 我们看看它是怎么计算的:

 (1)原始数据大小是 0-15 的一共 16 个数字,卷积核宽度是 3,向量是 [0.1,0.2,0.3]。

 我们看第一个卷积是对 x[0:3] 共 3 个值 [0,1,2] 进行卷积,公式如下:

0 * 0.1+1 * 0.2+2 * 0.3=0.8

 (2)对第二个目标卷积,是 x[1:4] 共 3 个值 [1,2,3] 进行卷积,公式如下:

1 * 0.1+2 * 0.2+3 * 0.3=1.4

 看到和计算结果完全一致!

11.png

 该图就是conv1d的示意图,和conv2d的区别就是只对宽度卷积,不对高度卷积。最后结果的宽度是原始数据的宽度减去卷积核的宽度再加上

1,这里就是 14。

 所以最终卷积之后的结果一共是 14 个数值,显示如下:

12.png

 我们再看看输入数据有多个通道的情况:


5.2.5 核心代码

print("conv1d sample")
a=range(16)
x = Variable(torch.Tensor(a))
x=x.view(1,2,8)
print("x variable:", x)
b=torch.ones(6)
b[0]=0.1
b[1]=0.2
b[2]=0.3
weights = Variable(b)
weights=weights.view(1,2,3)
print ("weights:",weights)
y=F.conv1d(x, weights, padding=0)
print ("y:",y)

13.png

我们看看返回结果第一个元素 27.8 是怎么计算出来的,这时候卷积核有 2 个通道:

[0.1,0.2,0.3] 和 [1,1,1]

 第 1 个卷积对象也有 2 个通道:[0,1,2] 和 [8,9,10]

 结果是 2 个卷积核分别对应 2 个输入通道进行卷积然后求和。

 卷积核对第 1 个卷积对象的卷积值:(0.1 * 0+0.2 * 1+0.3 * 2)+(1 * 8+1 * 9+1 * 10)=27.8

 第2个卷积对象也有 2 个通道:[1,2,3] 和 [9,10,11]

 卷积核对第 2 个卷积对象的卷积值:(0.1 * 1+0.2 * 2+0.3 * 3)+(1 * 9+1 * 10+1 * 11)=31.4,和 pytorch 计算结果相同。


六、池化层


 池化层比较容易理解,就是将多个元素用一个统计值来表示。

 那为什么要池化呢?

 比如对于一个图像来说,单个的像素其实不代表什么含义。统计值可以取最大值,也可以取平均值,用不同的池化函数来表示。


6.1 max_pool2d

 对于二维最大值池化来说,用 torch.nn.functional. F.max_pool2d 方法来操作。

 比如:


import torch.nn.functional as F
from torch.autograd import Variable
print("conv2d sample")
a=range(20)
x = Variable(torch.Tensor(a))
x=x.view(1,1,4,5)
print("x variable:", x)
y=F.max_pool2d(x, kernel_size=2,stride=2)
print ("y:",y)


 最后显示结果如下图:

14.png

 x 是 4*5 的矩阵,表示高度 4,宽度 5,一个样本,每个样本一个通道。

 x=x.view(1,1,4,5) 意思是将 x 矩阵转换成 (1,1,4,5) 的四维矩阵,第一个 1 是样本数,第二个 1 是通道数,第三个 4 和第四个 5 是高度和宽度。

 b=F.max_pool2d(x, kernel_size=2,stride=2) 中的参数 2 表示池化的核大小是 2,也就是 (2,2),表示核是一个行 2 列 2 的矩阵,每两行两列池化成一个数据。比如:

 [[1,2],

 [3,4]]

 会被池化成最大的数,就是 4。

 stride=2 表示滑动窗口为 2,第一个池化对象之后相隔 2 个元素距离,如果剩下的不够池化核的尺寸,则忽略掉不作池化处理。

 第 1 个池化目标是 [[0,1],[5,6]],因此最大池化结果是 6;第 2 个池化目标是 [[2,3],[7,8]],因此最大池化结果是 8。

 max_pool2d 方法的说明如下:

torch.nn.functional.max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1

 那么具体的各个参数的含义说明如下:

 input:输入的 Tensor 数据,格式为 (channels,H,W),三维数组,第一维度是通道数或者记录数,二、三维度是高度和宽度。

 kernel_size:池化区的大小,指定宽度和高度 (kh x kw),如果只有一个值则表示宽度和高度相同。

 stride:滑动窗口,默认和 kernel_size 相同值,这样在池化的时候就不会重叠。如果设置的比 kernel_size 小,则池化时会重叠。它也是高度和宽度两个值。

 padding:是否对输入在左前端填充 0。池化时,如果剩余的区域不够池化区大小,则会丢弃掉。 Padding 可以将输入数据的区域改造成是池化核的整数倍,这样就不会丢弃掉原始数据了。Padding 也是指定填充区域的高度和宽度,默认 0(就是填充区域为 0,不填充的意思)。

 ceil_mode:在计算输出 shape 大小时按照 ceil 还有 floor 计算,是数序函数(如ceil(4.5)=5;floor(4.5)=4)。

 count_include_pad:为 True 时,在求平均时会包含 0 填充区域的大小。这个参数只有在 avg_pool2d 并且 padding 参数不为 0 时才有意义。


6.2 avg_pool2d

 那么同样的,avg_pool2d 和 max_pool2d 的计算原理是一样的!只不过avg_pool2d 取的是平均值,而不是最大值而已。这里就不重复说明计算过程了。


6.3 max_pool1d

 max_pool1d 和 max_pool2d 的区别和卷积操作类似,也是只对宽度进行池化。

 先看看示例代码:


print("conv1d sample")
a=range(16)
x = Variable(torch.Tensor(a))
x=x.view(1,1,16)
print("x variable:", x)
y=F.max_pool1d(x, kernel_size=2,stride=2)
print ("y:",y)


 输出结果:

15.png

 max_pool1d 方法对输入参数的最后一个维度进行最大池化。

 第一个池化目标 [0,1],池化输出 1;

 第二个池化目标 [2,3],池化输出 3;

 ……

 最后结果就是这样计算得来的。

 同样,我们仿照卷积操作再看看多通道的池化示例。代码:


print("conv1d sample")
a=range(16)
x = Variable(torch.Tensor(a))
x=x.view(1,2,8)
print("x variable:", x)
y=F.max_pool1d(x, kernel_size=2,stride=2)
print ("y:",y)


 输出结果:

16.png

 可以看到通道数保持不变。


七、后记


 好的,恭喜你看完了本文的全部内容!其余的知识点,会在基于PyTorch的深度学习实战的下篇和补充篇分享,会在下周放出!如果有兴趣跟着我学习的话,请在这周复习回顾并尽量手敲代码来体验并加深理解。下周见!

相关文章
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
369 2
|
21天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
36 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
69 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
123 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
206 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
2月前
|
存储 并行计算 PyTorch
探索PyTorch:模型的定义和保存方法
探索PyTorch:模型的定义和保存方法
|
2月前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
46 0
|
3月前
|
机器学习/深度学习 监控 PyTorch
PyTorch 模型调试与故障排除指南
在深度学习领域,PyTorch 成为开发和训练神经网络的主要框架之一。本文为 PyTorch 开发者提供全面的调试指南,涵盖从基础概念到高级技术的内容。目标读者包括初学者、中级开发者和高级工程师。本文探讨常见问题及解决方案,帮助读者理解 PyTorch 的核心概念、掌握调试策略、识别性能瓶颈,并通过实际案例获得实践经验。无论是在构建简单神经网络还是复杂模型,本文都将提供宝贵的洞察和实用技巧,帮助开发者更高效地开发和优化 PyTorch 模型。
55 3
PyTorch 模型调试与故障排除指南
|
4月前
|
机器学习/深度学习 PyTorch 编译器
PyTorch 与 TorchScript:模型的序列化与加速
【8月更文第27天】PyTorch 是一个非常流行的深度学习框架,它以其灵活性和易用性而著称。然而,当涉及到模型的部署和性能优化时,PyTorch 的动态计算图可能会带来一些挑战。为了解决这些问题,PyTorch 引入了 TorchScript,这是一个用于序列化和优化 PyTorch 模型的工具。本文将详细介绍如何使用 TorchScript 来序列化 PyTorch 模型以及如何加速模型的执行。
170 4
|
4月前
|
机器学习/深度学习 边缘计算 PyTorch
PyTorch 与边缘计算:将深度学习模型部署到嵌入式设备
【8月更文第29天】随着物联网技术的发展,越来越多的数据处理任务开始在边缘设备上执行,以减少网络延迟、降低带宽成本并提高隐私保护水平。PyTorch 是一个广泛使用的深度学习框架,它不仅支持高效的模型训练,还提供了多种工具帮助开发者将模型部署到边缘设备。本文将探讨如何将PyTorch模型高效地部署到嵌入式设备上,并通过一个具体的示例来展示整个流程。
774 1