7、延迟队列
7.1、延迟队列概念
延时队列,队列内部是有序的,最重要的特性就体现在它的延时属性上,延时队列中的元素是希望 在指定时间到了以后或之前取出和处理,简单来说,延时队列就是用来存放需要在指定时间被处理的 元素的队列。
7.2、延迟队列使用场景
1.订单在十分钟之内未支付则自动取消
2.新创建的店铺,如果在十天内都没有上传过商品,则自动发送消息提醒。
3.用户注册成功后,如果三天内没有登陆则进行短信提醒。
4.用户发起退款,如果三天内没有得到处理则通知相关运营人员。
5.预定会议后,需要在预定的时间点前十分钟通知各个与会人员参加会议
这些场景都有一个特点,需要在某个事件发生之后或者之前的指定时间点完成某一项任务,如: 发生订单生成事件,在十分钟之后检查该订单支付状态,然后将未支付的订单进行关闭;看起来似乎 使用定时任务,一直轮询数据,每秒查一次,取出需要被处理的数据,然后处理不就完事了吗?如果 数据量比较少,确实可以这样做,比如:对于“如果账单一周内未支付则进行自动结算”这样的需求, 如果对于时间不是严格限制,而是宽松意义上的一周,那么每天晚上跑个定时任务检查一下所有未支 付的账单,确实也是一个可行的方案。但对于数据量比较大,并且时效性较强的场景,如:“订单十 分钟内未支付则关闭“,短期内未支付的订单数据可能会有很多,活动期间甚至会达到百万甚至千万 级别,对这么庞大的数据量仍旧使用轮询的方式显然是不可取的,很可能在一秒内无法完成所有订单 的检查,同时会给数据库带来很大压力,无法满足业务要求而且性能低下。
7.3、RabbitMQ中的TTL
TTL是什么呢?TTL是RabbitMQ中一个消息或者队列的属性,表明一条消息或者该队列中所有消息的最大存活时间,
单位是毫秒。换句话说,如果一条消息设置了 TTL 属性或者进入了设置 TTL 属性的队列,那么这 条消息如果在 TTL 设置的时间内没有被消费,则会成为"死信"。如果同时配置了队列的 TTL 和消息的 TTL,那么较小的那个值将会被使用,有两种方式设置 TTL。
7.3.1、消息设置TTL
另一种方式便是针对每条消息设置TTL
7.3.2、队列设置TTL
第一种是在创建队列的时候设置队列的“x-message-ttl”属性
7.3.3、两者的区别
如果设置了队列的 TTL 属性,那么一旦消息过期,就会被队列丢弃(如果配置了死信队列被丢到死信队 列中),而第二种方式,消息即使过期,也不一定会被马上丢弃,因为消息是否过期是在即将投递到消费者 之前判定的,如果当前队列有严重的消息积压情况,则已过期的消息也许还能存活较长时间;另外,还需 要注意的一点是,如果不设置 TTL,表示消息永远不会过期,如果将 TTL 设置为 0,则表示除非此时可以 直接投递该消息到消费者,否则该消息将会被丢弃。 前一小节我们介绍了死信队列,刚刚又介绍了 TTL,至此利用 RabbitMQ 实现延时队列的两大要素已 经集齐,接下来只需要将它们进行融合,再加入一点点调味料,延时队列就可以新鲜出炉了。想想看,延 时队列,不就是想要消息延迟多久被处理吗,TTL 则刚好能让消息在延迟多久之后成为死信,另一方面, 成为死信的消息都会被投递到死信队列里,这样只需要消费者一直消费死信队列里的消息就完事了,因为 里面的消息都是希望被立即处理的消息。
7.4、整合springboot
7.4.1、创建一个springboot项目
7.4.2、添加依赖
<!--RabbitMQ 依赖--> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.47</version> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> </dependency> <!--swagger--> <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swagger2</artifactId> <version>2.9.2</version> </dependency> <dependency> <groupId>io.springfox</groupId> <artifactId>springfox-swagger-ui</artifactId> <version>2.9.2</version> </dependency> <!--RabbitMQ 测试依赖--> <dependency> <groupId>org.springframework.amqp</groupId> <artifactId>spring-rabbit-test</artifactId> <scope>test</scope> </dependency>
7.4.3、修改配置文件
spring.rabbitmq.host=101.34.254.160 spring.rabbitmq.port=5672 spring.rabbitmq.username=admin spring.rabbitmq.password=admin
7.5、队列TTL
7.5.1、代码架构图
创建两个队列 QA 和 QB,两者队列 TTL 分别设置为 10S 和 40S,然后在创建一个交换机 X 和死信交 换机 Y,它们的类型都是 direct,创建一个死信队列 QD,它们的绑定关系如下:
7.5.2、配置文件类代码
@Configuration public class TtlQueueConfig { public static final String X_EXCHANGE = "X"; public static final String QUEUE_A = "QA"; public static final String QUEUE_B = "QB"; public static final String Y_DEAD_LETTER_EXCHANGE = "Y"; public static final String DEAD_LETTER_QUEUE = "QD"; // 声明 xExchange @Bean("xExchange") public DirectExchange xExchange() { return new DirectExchange(X_EXCHANGE); } // 声明 xExchange @Bean("yExchange") public DirectExchange yExchange() { return new DirectExchange(Y_DEAD_LETTER_EXCHANGE); } //声明队列 A ttl 为 10s 并绑定到对应的死信交换机 @Bean("queueA") public Queue queueA() { Map<String, Object> args = new HashMap<>(3); //声明当前队列绑定的死信交换机 args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE); //声明当前队列的死信路由 key args.put("x-dead-letter-routing-key", "YD"); //声明队列的 TTL args.put("x-message-ttl", 10000); return QueueBuilder.durable(QUEUE_A).withArguments(args).build(); } // 声明队列 A 绑定 X 交换机 @Bean public Binding queueaBindingX(@Qualifier("queueA") Queue queueA, @Qualifier("xExchange") DirectExchange xExchange) { return BindingBuilder.bind(queueA).to(xExchange).with("XA"); } //声明队列 B ttl 为 40s 并绑定到对应的死信交换机 @Bean("queueB") public Queue queueB() { Map<String, Object> args = new HashMap<>(3); //声明当前队列绑定的死信交换机 args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE); //声明当前队列的死信路由 key args.put("x-dead-letter-routing-key", "YD"); //声明队列的 TTL args.put("x-message-ttl", 40000); return QueueBuilder.durable(QUEUE_B).withArguments(args).build(); } //声明队列 B 绑定 X 交换机 @Bean public Binding queuebBindingX(@Qualifier("queueB") Queue queue1B, @Qualifier("xExchange") DirectExchange xExchange) { return BindingBuilder.bind(queue1B).to(xExchange).with("XB"); } //声明死信队列 QD @Bean("queueD") public Queue queueD() { return new Queue(DEAD_LETTER_QUEUE); } //声明死信队列 QD 绑定关系 @Bean public Binding deadLetterBindingQAD(@Qualifier("queueD") Queue queueD, @Qualifier("yExchange") DirectExchange yExchange) { return BindingBuilder.bind(queueD).to(yExchange).with("YD"); } }
7.5.3、消息生产者代码
@Slf4j @RequestMapping("ttl") @RestController public class SendMsgController { @Autowired private RabbitTemplate rabbitTemplate; @GetMapping("sendMsg/{message}") public void sendMsg(@PathVariable String message){ log.info("当前时间:{},发送一条信息给两个 TTL 队列:{}", new Date(), message); rabbitTemplate.convertAndSend("X", "XA", "消息来自 ttl 为 10S 的队列: "+message); rabbitTemplate.convertAndSend("X", "XB", "消息来自 ttl 为 40S 的队列: "+message); } }
7.5.4、消息消费者代码
@Slf4j @Component public class DeadLetterQueueConsumer { @RabbitListener(queues = "QD") public void receiveD(Message message, Channel channel) throws IOException { String msg = new String(message.getBody()); log.info("当前时间:{},收到死信队列信息{}", new Date().toString(), msg); } }
发送一个请求http://localhost:8080/ttl/sendMsg/哈哈哈
第一条消息在 10S 后变成了死信消息,然后被消费者消费掉,第二条消息在 40S 之后变成了死信消息, 然后被消费掉,这样一个延时队列就打造完成了。 不过,如果这样使用的话,岂不是每增加一个新的时间需求,就要新增一个队列,这里只有 10S 和 40S 两个时间选项,如果需要一个小时后处理,那么就需要增加 TTL 为一个小时的队列,如果是预定会议室然 后提前通知这样的场景,岂不是要增加无数个队列才能满足需求?
7.6、延时队列优化
7.6.1、代码架构图
在这里新增了一个队列 QC,绑定关系如下,该队列不设置 TTL 时间
7.6.2、配置文件类代码
@Component public class MsgTtlQueueConfig { public static final String Y_DEAD_LETTER_EXCHANGE = "Y"; public static final String QUEUE_C = "QC"; //声明队列 C 死信交换机 @Bean("queueC") public Queue queueB(){ Map<String, Object> args = new HashMap<>(3); //声明当前队列绑定的死信交换机 args.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE); //声明当前队列的死信路由 key args.put("x-dead-letter-routing-key", "YD"); //没有声明 TTL 属性 return QueueBuilder.durable(QUEUE_C).withArguments(args).build(); } //声明队列 B 绑定 X 交换机 @Bean public Binding queuecBindingX(@Qualifier("queueC") Queue queueC, @Qualifier("xExchange") DirectExchange xExchange){ return BindingBuilder.bind(queueC).to(xExchange).with("XC"); } }
7.6.3、消息生产者代码
@GetMapping("sendExpirationMsg/{message}/{ttlTime}") public void sendMsg(@PathVariable String message,@PathVariable String ttlTime) { rabbitTemplate.convertAndSend("X", "XC", message, correlationData ->{ correlationData.getMessageProperties().setExpiration(ttlTime); return correlationData; }); log.info("当前时间:{},发送一条时长{}毫秒 TTL 信息给队列 C:{}", new Date(),ttlTime, message); }
发起请求
http://localhost:8080/ttl/sendExpirationMsg/你好 1/20000
http://localhost:8080/ttl/sendExpirationMsg/你好 2/2000
看起来似乎没什么问题,但是在最开始的时候,就介绍过如果使用在消息属性上设置 TTL 的方式,消 息可能并不会按时“死亡“,因为 RabbitMQ 只会检查第一个消息是否过期,如果过期则丢到死信队列, 如果第一个消息的延时时长很长,而第二个消息的延时时长很短,第二个消息并不会优先得到执行。
7.7、Rabbitmq插件实现延迟队列
7.7.1、安装延时队列插件
下载地址https://github.com/rabbitmq/rabbitmq-delayed-message-exchange/releases
下载rabbitmq_delayed_message_exchange插件我这里下载的是3.8.0版本。
下载完成后,需要放入RabbitMQ的安装目录下的plgins目录/usr/lib/rabbitmq/lib/rabbitmq_server-3.8.8/plugins
,如下
执行以下命令让该插件生效,然后重启RabbitMQ
rabbitmq-plugins enable rabbitmq_delayed_message_exchange
7.7.2、代码架构图
在这里新增了一个队列 delayed.queue,一个自定义交换机 delayed.exchange,绑定关系如下:
7.7.3、配置文件类代码
在我们自定义的交换机中,这是一种新的交换类型,该类型消息支持延迟投递机制 消息传递后并 不会立即投递到目标队列中,而是存储在 mnesia(一个分布式数据系统)表中,当达到投递时间时,才 投递到目标队列中。
@Configuration public class DelayedQueueConfig { public static final String DELAYED_QUEUE_NAME = "delayed.queue"; public static final String DELAYED_EXCHANGE_NAME = "delayed.exchange"; public static final String DELAYED_ROUTING_KEY = "delayed.routingkey"; @Bean public Queue delayedQueue() { return new Queue(DELAYED_QUEUE_NAME); } //自定义交换机 我们在这里定义的是一个延迟交换机 @Bean public CustomExchange delayedExchange() { Map<String, Object> args = new HashMap<>(); //自定义交换机的类型 args.put("x-delayed-type", "direct"); return new CustomExchange(DELAYED_EXCHANGE_NAME, "x-delayed-message", true, false, args); } @Bean public Binding bindingDelayedQueue(@Qualifier("delayedQueue") Queue queue, @Qualifier("delayedExchange") CustomExchange delayedExchange) { return BindingBuilder.bind(queue).to(delayedExchange).with(DELAYED_ROUTING_KEY).noargs(); } }
7.7.4、消息生产者代码
public static final String DELAYED_EXCHANGE_NAME = "delayed.exchange"; public static final String DELAYED_ROUTING_KEY = "delayed.routingkey"; @GetMapping("sendDelayMsg/{message}/{delayTime}") public void sendMsg(@PathVariable String message,@PathVariable Integer delayTime) { rabbitTemplate.convertAndSend(DELAYED_EXCHANGE_NAME, DELAYED_ROUTING_KEY, message, correlationData ->{ correlationData.getMessageProperties().setDelay(delayTime); return correlationData; }); log.info(" 当 前 时 间 : {}, 发送一条延迟 {} 毫秒的信息给队列 delayed.queue:{}", new Date(),delayTime, message); }
7.7.5、消息消费者代码
public static final String DELAYED_QUEUE_NAME = "delayed.queue"; @RabbitListener(queues = DELAYED_QUEUE_NAME) public void receiveDelayedQueue(Message message){ String msg = new String(message.getBody()); log.info("当前时间:{},收到延时队列的消息:{}", new Date().toString(), msg); }
发起请求
http://localhost:8080/ttl/sendDelayMsg/come on baby1/20000
http://localhost:8080/ttl/sendDelayMsg/come on baby2/2000
第二个消息被先消费掉了,符合预期
7.8、总结
延时队列在需要延时处理的场景下非常有用,使用 RabbitMQ 来实现延时队列可以很好的利用 RabbitMQ 的特性,如:消息可靠发送、消息可靠投递、死信队列来保障消息至少被消费一次以及未被正 确处理的消息不会被丢弃。另外,通过 RabbitMQ 集群的特性,可以很好的解决单点故障问题,不会因为 单个节点挂掉导致延时队列不可用或者消息丢失。 当然,延时队列还有很多其它选择,比如利用 Java 的 DelayQueue,利用 Redis 的 zset,利用 Quartz 或者利用 kafka 的时间轮,这些方式各有特点,看需要适用的场景