Pytorch Lightning使用:【LightningModule、LightningDataModule、Trainer、ModelCheckpoint】

简介: Pytorch Lightning使用:【LightningModule、LightningDataModule、Trainer、ModelCheckpoint】

pytorch lightning 官方手册  

pytorch lightning 官方手册  Welcome to ⚡ PyTorch Lightning — PyTorch Lightning 2.1.0dev documentation

https://lightning.ai/docs/pytorch/latest/

Pytorch Lightning简介

PyTorch Lightning是面向专业AI研究人员和机器学习工程师的深度学习框架,他们需要在不牺牲大规模性能的情况下获得最大的灵活性。lightning 使你的想法到论文和产品同样速度。

LightningModule是原始PyTorch的一个轻量化结构,允许最大的灵活性和最小的库文件。它作为一个模型“配方”,指定所有的训练细节。

少写80%的代码。Lightning删除了大约80%的重复代码(样板),以最小化bug的表面面积,这样您就可以专注于交付价值而不是工程。

保持最大的灵活性,可以在training_step中定义完整的PyTorch训练代码。

处理任意大小的数据集,没有特殊的要求,直接使用PyTorch dataloader处理海量数据集

6f7985d666064afa98b3fe1b3787b7ac.png

安装Lightning

pip install lightning

或者

conda install lightning -c conda-forge

安装后导入相关包

from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.loggers import TestTubeLogger

定义LightningModule

LightningModule将你的PyTorch代码组织成6个部分:

初始化(__init__和setup())。

训练 (training_step())

验证(validation_step())

测试(test_step())

预测(predict_step())

优化器和LR调度器(configure_optimizers())

当你使用Lightning时,代码不是抽象的——只是组织起来的。所有不在LightningModule中的其他代码都已由Trainer自动为您执行。

net = MyLightningModuleNet()
trainer = Trainer()
trainer.fit(net)

不需要.cuda()或.to(device)调用。Lightning已经为你做了这些。如下:

# don't do in Lightning
x = torch.Tensor(2, 3)
x = x.cuda()
x = x.to(device)
# do this instead
x = x  # leave it alone!
# or to init a new tensor
new_x = torch.Tensor(2, 3)
new_x = new_x.to(x)

当在分布式策略下运行时,默认情况下,Lightning会为您处理分布式采样器。

# Don't do in Lightning...
data = MNIST(...)
sampler = DistributedSampler(data)
DataLoader(data, sampler=sampler)
# do this instead
data = MNIST(...)
DataLoader(data)

LightningModule其实是一个torch.nn.Module,但增加了一些功能:

net = Net.load_from_checkpoint(PATH)
net.freeze()
out = net(x)

示例:利用Lightning 构建网络训练网络

1. 构建模型

import lightning.pytorch as pl
import torch.nn as nn
import torch.nn.functional as F
class LitModel(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.l1 = nn.Linear(28 * 28, 10)
    def forward(self, x):
        return torch.relu(self.l1(x.view(x.size(0), -1)))
    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        return loss
    def configure_optimizers(self):
        return torch.optim.Adam(self.parameters(), lr=0.02)

2 训练网络

train_loader = DataLoader(MNIST(os.getcwd(), download=True, transform=transforms.ToTensor()))
trainer = pl.Trainer(max_epochs=1)
model = LitModel()
trainer.fit(model, train_dataloaders=train_loader)

3 其他LightningModule:

Name

Description

__init__ and setup()

初始化

forward()

仅通过模型运行数据(与training_step分开)

training_step()

完整的训练步骤

validation_step()

完整的验证步骤

test_step()

完整的测试步骤

predict_step()

完整的预测步骤

configure_optimizers()

定义优化器和LR调度器

3.1 Lightning 数据集加载

数据集有两种实现方法:

  • 直接调用第三方公开数据集(如:MNIST等数据集)
  • 自定义数据集(自己去继承torch.utils.data.dataset.Dataset,自定义类)

3.1.1 使用公开数据集

from torch.utils.data import DataLoader, random_split
import pytorch_lightning as pl
class MyExampleModel(pl.LightningModule):
    def __init__(self, args):
        super().__init__()
        dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
        train_dataset, val_dataset, test_dataset = random_split(dataset, [50000, 5000, 5000])
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.test_dataset = test_dataset
        ...
    def train_dataloader(self):
        return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=False, num_workers=0)
    def val_dataloader(self):
        return DataLoader(self.val_dataset, batch_size=self.batch_size, shuffle=False)
    def test_dataloader(self):
        return DataLoader(self.test_dataset, batch_size=1, shuffle=True)

3.1.2  自定义dataset

(1)自己完成dataset的编写

# -*- coding: utf-8 -*-
'''
@Description: Define the format of data used in the model.
'''
import sys
import pathlib
import torch
from torch.utils.data import Dataset
from utils import sort_batch_by_len, source2ids
abs_path = pathlib.Path(__file__).parent.absolute()
sys.path.append(sys.path.append(abs_path))
class SampleDataset(Dataset):
    """
    The class represents a sample set for training.
    """
    def __init__(self, data_pairs, vocab):
        self.src_texts = [data_pair[0] for data_pair in data_pairs]
        self.tgt_texts = [data_pair[1] for data_pair in data_pairs]
        self.vocab = vocab
        self._len = len(data_pairs)  # Keep track of how many data points.
    def __len__(self):
        return self._len
    def __getitem__(self, index):
        # print("\nself.src_texts[{0}] = {1}".format(index, self.src_texts[index]))
        src_ids, oovs = source2ids(self.src_texts[index], self.vocab)  # 将当前文本self.src_texts[index]转为ids,oovs为超出词典范围的词汇文本
        item = {
            'x': [self.vocab.SOS] + src_ids + [self.vocab.EOS],
            'y': [self.vocab.SOS] + [self.vocab[i] for i in self.tgt_texts[index]] + [self.vocab.EOS],
            'x_len': len(self.src_texts[index]),
            'y_len': len(self.tgt_texts[index]),
            'oovs': oovs,
            'len_oovs': len(oovs)
        }
        return item

(2)自定义DataModule类(继承LightningDataModule)来调用DataLoader

from torch.utils.data import DataLoader, random_split
import pytorch_lightning as pl
class MyDataModule(pl.LightningDataModule):
    def __init__(self):
        super().__init__()
    def prepare_data(self):
        # 在该函数里一般实现数据集的下载等,只有cuda:0 会执行该函数
        # download, split, etc...
        # only called on 1 GPU/TPU in distributed
        pass
    def forward()
    def setup(self, stage):
        # make assignments here (val/train/test split)
        # called on every process in DDP
        # 实现数据集的定义,每张GPU都会执行该函数, stage 用于标记是用于什么阶段
        if stage == 'fit' or stage is None:
            self.train_dataset = MyDataset(self.train_file_path, self.train_file_num, transform=None)
            self.val_dataset = MyDataset(self.val_file_path, self.val_file_num, transform=None)
        if stage == 'test' or stage is None:
            self.test_dataset = MyDataset(self.test_file_path, self.test_file_num, transform=None)
    def train_dataloader(self):
        return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=False, num_workers=0)
    def val_dataloader(self):
        return DataLoader(self.val_dataset, batch_size=self.batch_size, shuffle=False)
    def test_dataloader(self):
        return DataLoader(self.test_dataset, batch_size=1, shuffle=True)

3.2Training

3.2.1Training Loop:

要激活训练循环,重写training_step()。

class LitClassifier(pl.LightningModule):
    def __init__(self, model):
        super().__init__()
        self.model = model
    def training_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = F.cross_entropy(y_hat, y)
        return loss  #一定要返回loss,其中batch 即为从 train_dataloader 采样的一个batch的数据,batch_idx即为目前batch的索引

3.2.2 Train Epoch-level Metrics:

如果您想计算时间级别的度量并记录它们,请使用log()。

def training_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self.model(x)
    loss = F.cross_entropy(y_hat, y)
    # logs metrics for each training_step,
    # and the average across the epoch, to the progress bar and logger
    self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
    return loss

3.2.3Train Epoch-level Operations

如果需要使用每个training_step()的所有输出,则重写 on_train_epoch_end()方法。

def __init__(self):
    super().__init__()
    self.training_step_outputs = []
def training_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self.model(x)
    loss = F.cross_entropy(y_hat, y)
    preds = ...
    self.training_step_outputs.append(preds)
    return loss
def on_train_epoch_end(self):
    all_preds = torch.stack(self.training_step_outputs)
    # do something with all preds
    ...
    self.training_step_outputs.clear()  # free memory

3.3 Validation

3.3.1 Validation Loop

要在训练时激活验证循环,重写validation_step()函数。

class LitModel(pl.LightningModule):
    def validation_step(self, batch, batch_idx):
        x, y = batch
        y_hat = self.model(x)
        loss = F.cross_entropy(y_hat, y)
        self.log("val_loss", loss)

也可以通过重写validation_step()并调用validate(),在验证数据加载器上只运行验证循环。

model = Model()
trainer = Trainer()
trainer.validate(model)

建议在单个设备上进行验证,以确保每个样品/取样得到准确评估一次。这有助于确保以正确的方式对研究论文进行基准测试。否则,在多设备设置中,当使用DistributedSampler时,样本可能会重复,例如strategy="ddp"。它在一些设备上复制一些样本,以确保所有设备在输入不均匀的情况下具有相同的批大小。

3.3.2 Validation Epoch-level Metrics

如果需要使用每个validation_step()的所有输出,则重写 on_validation_epoch_end()函数。注意,这个方法在on_train_epoch_end()之前调用。

def __init__(self):
    super().__init__()
    self.validation_step_outputs = []
def validation_step(self, batch, batch_idx):
    x, y = batch
    y_hat = self.model(x)
    loss = F.cross_entropy(y_hat, y)
    pred = ...
    self.validation_step_outputs.append(pred)
    return pred
def on_validation_epoch_end(self):
    all_preds = torch.stack(self.validation_step_outputs)
    # do something with all preds
    ...
    self.validation_step_outputs.clear()  # free memory

3.4 Testing

3.4.1Test Loop

启用测试循环的过程与启用验证循环的过程相同。详情请参阅上述部分。为此,重写test_step()函数。

model = Model()
trainer = Trainer()
trainer.fit(model)
# automatically loads the best weights for you
trainer.test(model)

有两种方式来调用test():

# call after training
trainer = Trainer()
trainer.fit(model)
# automatically auto-loads the best weights from the previous run
trainer.test(dataloaders=test_dataloader)
# or call with pretrained model
model = MyLightningModule.load_from_checkpoint(PATH)
trainer = Trainer()
trainer.test(model, dataloaders=test_dataloader)

同上, 建议在单个设备上进行验证,以确保每个样品得到准确评估一次。这有助于确保以正确的方式对研究论文进行基准测试。否则,在多设备设置中,当使用DistributedSampler时,样本可能会重复,例如。策略=“ddp”。它在一些设备上复制一些样本,以确保所有设备在输入不均匀的情况下具有相同的批大小。

3.5 Inference

3.5.1Prediction Loop

默认情况下,predict_step()方法运行forward()方法。为了定制这种行为,只需重写predict_step()方法。如下,重写predict_step()并尝试Monte Carlo Dropout:

class LitMCdropoutModel(pl.LightningModule):
    def __init__(self, model, mc_iteration):
        super().__init__()
        self.model = model
        self.dropout = nn.Dropout()
        self.mc_iteration = mc_iteration
    def predict_step(self, batch, batch_idx):
        # enable Monte Carlo Dropout
        self.dropout.train()
        # take average of `self.mc_iteration` iterations
        pred = torch.vstack([self.dropout(self.model(x)).unsqueeze(0) for _ in range(self.mc_iteration)]).mean(dim=0)
        return pred

两种方式调用 predict():

# call after training
trainer = Trainer()
trainer.fit(model)
# automatically auto-loads the best weights from the previous run
predictions = trainer.predict(dataloaders=predict_dataloader)
# or call with pretrained model
model = MyLightningModule.load_from_checkpoint(PATH)
trainer = Trainer()
predictions = trainer.predict(model, dataloaders=test_dataloader)

NOTE:

在training_step 后面都紧跟着其相应的 training_step_end(self,batch_parts)和training_epoch_end(self, training_step_outputs) 函数;

validation_step 后面都紧跟着其相应的 validation_step_end(self,batch_parts)和validation_epoch_end(self, training_step_outputs) 函数;

test_step 后面都紧跟着其相应的 test_step_end(self,batch_parts)和 test_epoch_end(self, training_step_outputs) 函数

3.6 利用Trainer保存模型

在Trainer中设置default_root_dir参数, Lightning 会自动保存最近训练的epoch的模型到当前的工作空间(or.getcwd()),也可以在定义Trainer的时候指定:

trainer = Trainer(default_root_dir='/your/path/to/save/checkpoints')

也可以关闭自动保存模型:

trainer = Trainer(checkpoint_callback=False

3.7 加载预训练模型,完整流程

def main(hparams):
    system = NeRFSystem(hparams)
    checkpoint_callback = \
        ModelCheckpoint(filepath=os.path.join(f'ckpts/{hparams.exp_name}',
                                               '{epoch:d}'),
                        monitor='val/psnr',
                        mode='max',
                        save_top_k=-1)
    logger = TestTubeLogger(save_dir="logs",
                            name=hparams.exp_name,
                            debug=False,
                            create_git_tag=False,
                            log_graph=False)
    trainer = Trainer(max_epochs=hparams.num_epochs,
                      checkpoint_callback=checkpoint_callback,
                      resume_from_checkpoint=hparams.ckpt_path,
                      logger=logger,
                      weights_summary=None,
                      progress_bar_refresh_rate=hparams.refresh_every,
                      gpus=hparams.num_gpus,
                      accelerator='ddp' if hparams.num_gpus>1 else None,
                      num_sanity_val_steps=1,
                      benchmark=True,
                      profiler="simple" if hparams.num_gpus==1 else None)
    trainer.fit(system)
if __name__ == '__main__':
    hparams = get_opts()
    main(hparams)

4 完整实例如下,NeRFW:

import os
from opt import get_opts
import torch
from collections import defaultdict
from torch.utils.data import DataLoader
from datasets import dataset_dict
# models
from models.nerf import *
from models.rendering import *
# optimizer, scheduler, visualization
from utils import *
# losses
from losses import loss_dict
# metrics
from metrics import *
# pytorch-lightning
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.loggers import TestTubeLogger
class NeRFSystem(LightningModule):
    def __init__(self, hparams):
        super().__init__()
        self.hparams = hparams
        # self.hparams.update(hparams)
        self.loss = loss_dict['nerfw'](coef=1)
        self.models_to_train = []
        self.embedding_xyz = PosEmbedding(hparams.N_emb_xyz-1, hparams.N_emb_xyz)
        self.embedding_dir = PosEmbedding(hparams.N_emb_dir-1, hparams.N_emb_dir)
        self.embeddings = {'xyz': self.embedding_xyz,
                           'dir': self.embedding_dir}
        if hparams.encode_a:
            self.embedding_a = torch.nn.Embedding(hparams.N_vocab, hparams.N_a)
            self.embeddings['a'] = self.embedding_a
            self.models_to_train += [self.embedding_a]
        if hparams.encode_t:
            self.embedding_t = torch.nn.Embedding(hparams.N_vocab, hparams.N_tau)
            self.embeddings['t'] = self.embedding_t
            self.models_to_train += [self.embedding_t]
        self.nerf_coarse = NeRF('coarse',
                                in_channels_xyz=6*hparams.N_emb_xyz+3,
                                in_channels_dir=6*hparams.N_emb_dir+3)
        self.models = {'coarse': self.nerf_coarse}
        if hparams.N_importance > 0:
            self.nerf_fine = NeRF('fine',
                                  in_channels_xyz=6*hparams.N_emb_xyz+3,
                                  in_channels_dir=6*hparams.N_emb_dir+3,
                                  encode_appearance=hparams.encode_a,
                                  in_channels_a=hparams.N_a,
                                  encode_transient=hparams.encode_t,
                                  in_channels_t=hparams.N_tau,
                                  beta_min=hparams.beta_min)
            self.models['fine'] = self.nerf_fine
        self.models_to_train += [self.models]
    def get_progress_bar_dict(self):
        items = super().get_progress_bar_dict()
        items.pop("v_num", None)
        return items
    def forward(self, rays, ts):
        """Do batched inference on rays using chunk."""
        B = rays.shape[0]
        results = defaultdict(list)
        for i in range(0, B, self.hparams.chunk):
            rendered_ray_chunks = \
                render_rays(self.models,
                            self.embeddings,
                            rays[i:i+self.hparams.chunk],
                            ts[i:i+self.hparams.chunk],
                            self.hparams.N_samples,
                            self.hparams.use_disp,
                            self.hparams.perturb,
                            self.hparams.noise_std,
                            self.hparams.N_importance,
                            self.hparams.chunk, # chunk size is effective in val mode
                            self.train_dataset.white_back)
            for k, v in rendered_ray_chunks.items():
                results[k] += [v]
        for k, v in results.items():
            results[k] = torch.cat(v, 0)
        return results
    def setup(self, stage):
        dataset = dataset_dict[self.hparams.dataset_name]
        kwargs = {'root_dir': self.hparams.root_dir}
        if self.hparams.dataset_name == 'phototourism':
            kwargs['img_downscale'] = self.hparams.img_downscale
            kwargs['val_num'] = self.hparams.num_gpus
            kwargs['use_cache'] = self.hparams.use_cache
        elif self.hparams.dataset_name == 'blender':
            kwargs['img_wh'] = tuple(self.hparams.img_wh)
            kwargs['perturbation'] = self.hparams.data_perturb
        self.train_dataset = dataset(split='train', **kwargs)
        self.val_dataset = dataset(split='val', **kwargs)
    def configure_optimizers(self):
        self.optimizer = get_optimizer(self.hparams, self.models_to_train)
        scheduler = get_scheduler(self.hparams, self.optimizer)
        return [self.optimizer], [scheduler]
    def train_dataloader(self):
        return DataLoader(self.train_dataset,
                          shuffle=True,
                          num_workers=4,
                          batch_size=self.hparams.batch_size,
                          pin_memory=True)
    def val_dataloader(self):
        return DataLoader(self.val_dataset,
                          shuffle=False,
                          num_workers=4,
                          batch_size=1, # validate one image (H*W rays) at a time
                          pin_memory=True)
    def training_step(self, batch, batch_nb):
        rays, rgbs, ts = batch['rays'], batch['rgbs'], batch['ts']
        results = self(rays, ts)
        loss_d = self.loss(results, rgbs)
        loss = sum(l for l in loss_d.values())
        with torch.no_grad():
            typ = 'fine' if 'rgb_fine' in results else 'coarse'
            psnr_ = psnr(results[f'rgb_{typ}'], rgbs)
        self.log('lr', get_learning_rate(self.optimizer))
        self.log('train/loss', loss)
        for k, v in loss_d.items():
            self.log(f'train/{k}', v, prog_bar=True)
        self.log('train/psnr', psnr_, prog_bar=True)
        return loss
    def validation_step(self, batch, batch_nb):
        rays, rgbs, ts = batch['rays'], batch['rgbs'], batch['ts']
        rays = rays.squeeze() # (H*W, 3)
        rgbs = rgbs.squeeze() # (H*W, 3)
        ts = ts.squeeze() # (H*W)
        results = self(rays, ts)
        loss_d = self.loss(results, rgbs)
        loss = sum(l for l in loss_d.values())
        log = {'val_loss': loss}
        typ = 'fine' if 'rgb_fine' in results else 'coarse'
        if batch_nb == 0:
            if self.hparams.dataset_name == 'phototourism':
                WH = batch['img_wh']
                W, H = WH[0, 0].item(), WH[0, 1].item()
            else:
                W, H = self.hparams.img_wh
            img = results[f'rgb_{typ}'].view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
            img_gt = rgbs.view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
            depth = visualize_depth(results[f'depth_{typ}'].view(H, W)) # (3, H, W)
            stack = torch.stack([img_gt, img, depth]) # (3, 3, H, W)
            self.logger.experiment.add_images('val/GT_pred_depth',
                                               stack, self.global_step)
        psnr_ = psnr(results[f'rgb_{typ}'], rgbs)
        log['val_psnr'] = psnr_
        return log
    def validation_epoch_end(self, outputs):
        mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean()
        self.log('val/loss', mean_loss)
        self.log('val/psnr', mean_psnr, prog_bar=True)
def main(hparams):
    system = NeRFSystem(hparams)
    checkpoint_callback = \
        ModelCheckpoint(filepath=os.path.join(f'ckpts/{hparams.exp_name}',
                                               '{epoch:d}'),
                        monitor='val/psnr',
                        mode='max',
                        save_top_k=-1)
    logger = TestTubeLogger(save_dir="logs",
                            name=hparams.exp_name,
                            debug=False,
                            create_git_tag=False,
                            log_graph=False)
    trainer = Trainer(max_epochs=hparams.num_epochs,
                      checkpoint_callback=checkpoint_callback,
                      resume_from_checkpoint=hparams.ckpt_path,
                      logger=logger,
                      weights_summary=None,
                      progress_bar_refresh_rate=hparams.refresh_every,
                      gpus=hparams.num_gpus,
                      accelerator='ddp' if hparams.num_gpus>1 else None,
                      num_sanity_val_steps=1,
                      benchmark=True,
                      profiler="simple" if hparams.num_gpus==1 else None)
    trainer.fit(system)
if __name__ == '__main__':
    hparams = get_opts()
    main(hparams)
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
2月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
56 7
|
3月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
96 7
利用 PyTorch Lightning 搭建一个文本分类模型
|
5月前
|
机器学习/深度学习 算法 PyTorch
PyTorch Lightning:简化研究到生产的工作流程
【8月更文第29天】深度学习项目往往面临着从研究阶段到生产部署的挑战。研究人员和工程师需要处理大量的工程问题,比如数据加载、模型训练、性能优化等。PyTorch Lightning 是一个轻量级的封装库,旨在通过减少样板代码的数量来简化 PyTorch 的使用,从而让开发者更专注于算法本身而不是工程细节。
129 1
|
5月前
|
机器学习/深度学习 算法 PyTorch
PyTorch Lightning:简化深度学习研究与开发
【8月更文第27天】PyTorch Lightning 是一个用于简化 PyTorch 开发流程的轻量级封装库。它的目标是让研究人员和开发者能够更加专注于算法和模型的设计,而不是被训练循环和各种低级细节所困扰。通过使用 PyTorch Lightning,开发者可以更容易地进行实验、调试和复现结果,从而加速研究与开发的过程。
197 1
|
机器学习/深度学习 存储 PyTorch
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(二)
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(二)
517 0
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(二)
|
存储 机器学习/深度学习 PyTorch
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(一)
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(一)
296 0
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(一)
|
机器学习/深度学习 存储 PyTorch
使用 PyTorch Lightning 将深度学习管道速度提高 10 倍
本文介绍了如何使用 PyTorch Lightning 构建高效且快速的深度学习管道,主要包括有为什么优化深度学习管道很重要、使用 PyTorch Lightning 加快实验周期的六种方法、以及实验总结。
使用 PyTorch Lightning 将深度学习管道速度提高 10 倍
|
3月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
472 2
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
61 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
3月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
197 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力