使用python将数据集划分为训练集、验证集和测试集

简介: 使用python将数据集划分为训练集、验证集和测试集

划分数据集


众所周知,将一个数据集只区分为训练集和验证集是不行的,还需要有测试集,本博文针对上一篇没有分出测试集的不足,重新划分数据集


直接上代码:

#split_data.py
#划分数据集flower_data,数据集划分到flower_datas中,训练集:验证集:测试集比例为6:2:2
import os
import random
from shutil import copy2
# 源文件路径
file_path = r"D:/other/ClassicalModel/other/flower_data"
# 新文件路径
new_file_path = r"D:/other/ClassicalModel/other/flower_datas"
# 划分数据比例为6:2:2
split_rate = [0.6, 0.2, 0.2]
print("Starting...")
print("Ratio= {}:{}:{}".format(int(split_rate[0] * 10), int(split_rate[1] * 10), int(split_rate[2] * 10)))
class_names = os.listdir(file_path)
# 在目标目录下创建文件夹
split_names = ['train', 'val', 'test']
# 判断是否存在木匾文件夹
if os.path.isdir(new_file_path):
    pass
else:
    os.mkdir(new_file_path)
for split_name in split_names:
    # split_path = os.path.join(new_file_path, split_name)
    split_path = new_file_path + "/" + split_name
    if os.path.isdir(split_path):
        pass
    else:
        os.mkdir(split_path)
    # 然后在split_path的目录下创建类别文件夹
    for class_name in class_names:
        class_split_path = os.path.join(split_path, class_name)
        if os.path.isdir(class_split_path):
            pass
        else:
            os.mkdir(class_split_path)
# 按照比例划分数据集,并进行数据图片的复制
# 首先进行分类遍历
for class_name in class_names:
    current_class_data_path = os.path.join(file_path, class_name)
    current_all_data = os.listdir(current_class_data_path)
    current_data_length = len(current_all_data)
    current_data_index_list = list(range(current_data_length))
    random.shuffle(current_data_index_list)
    train_path = os.path.join(os.path.join(new_file_path, 'train'), class_name)
    val_path = os.path.join(os.path.join(new_file_path, 'val'), class_name)
    test_path = os.path.join(os.path.join(new_file_path, 'test'), class_name)
    train_stop_flag = current_data_length * split_rate[0]
    val_stop_flag = current_data_length * (split_rate[0] + split_rate[1])
    current_idx = 0
    train_num = 0
    val_num = 0
    test_num = 0
    for i in current_data_index_list:
        src_img_path = os.path.join(current_class_data_path, current_all_data[i])
        if current_idx <= train_stop_flag:
            copy2(src_img_path, train_path
            train_num = train_num + 1
        elif (current_idx > train_stop_flag) and (current_idx <= val_stop_flag):
            copy2(src_img_path, val_path)
            val_num = val_num + 1
        else:
            copy2(src_img_path, test_path
            test_num = test_num + 1
        current_idx = current_idx + 1
    print("<{}> has {} pictures,train:val:test={}:{}:{}".format(class_name, current_data_length, train_num, val_num,
                                                              test_num))
print("Done")


输出结果:

注意:

只需要修改file_path(源文件夹)和new_file_path(新生成的文件夹)

其次是修改split_rate

相关文章
|
17天前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
130 1
|
2月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
130 18
|
22天前
|
测试技术 UED 开发者
性能测试报告-用于项目的性能验证、性能调优、发现性能缺陷等应用场景
性能测试报告用于评估系统性能、稳定性和安全性,涵盖测试环境、方法、指标分析及缺陷优化建议,是保障软件质量与用户体验的关键文档。
|
2月前
|
机器学习/深度学习 存储 分布式计算
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证(211)
本文探讨了Java大数据与机器学习模型在金融风险压力测试中的创新应用。通过多源数据采集、模型构建与优化,结合随机森林、LSTM等算法,实现信用风险动态评估、市场极端场景模拟与操作风险预警。案例分析展示了花旗银行与蚂蚁集团的智能风控实践,验证了技术在提升风险识别效率与降低金融风险损失方面的显著成效。
|
2月前
|
安全 测试技术 API
Python 单元测试详解
单元测试是Python开发中不可或缺的环节,能确保代码按预期运行、发现Bug、提升代码质量并支持安全重构。本文从基础概念讲起,逐步介绍Python单元测试的实践方法,涵盖unittest框架、pytest框架、断言使用、Mock技巧及测试覆盖率分析,助你全面掌握单元测试技能。
125 0
|
3月前
|
IDE 测试技术 API
python调试与测试
python调试与测试
|
3月前
|
人工智能 Java 测试技术
Java or Python?测试开发工程师如何选择合适的编程语言?
测试工程师如何选择编程语言?Java 还是 Python?多位资深专家分享建议:Python 入门简单、开发效率高,适合新手及自动化测试;Java 生态成熟,适合大型项目和平台开发。建议结合公司技术栈、个人基础及发展方向选择。长远来看,两者兼通更佳,同时关注 Go 等新兴语言。快速学习与实践才是关键。
|
4月前
|
测试技术 Python
Python接口自动化测试中Mock服务的实施。
总结一下,Mock服务在接口自动化测试中的应用,可以让我们拥有更高的灵活度。而Python的 `unittest.mock`库为我们提供强大的支持。只要我们正确使用Mock服务,那么在任何情况下,无论是接口是否可用,都可以进行准确有效的测试。这样,就大大提高了自动化测试的稳定性和可靠性。
189 0
|
4月前
|
Java 测试技术 容器
Jmeter工具使用:HTTP接口性能测试实战
希望这篇文章能够帮助你初步理解如何使用JMeter进行HTTP接口性能测试,有兴趣的话,你可以研究更多关于JMeter的内容。记住,只有理解并掌握了这些工具,你才能充分利用它们发挥其应有的价值。+
764 23
|
9月前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。

推荐镜像

更多