基于OpenCV的红绿灯识别代码解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 基于OpenCV的红绿灯识别代码解析

一堆废话

  红绿灯分为导向灯和圆形灯。一般圆形灯在路口只有一盏灯,红灯亮时禁止直行和左转,可以右转弯。导向灯市带有箭头的,可以有两个或三个,分别指示不同方向的行车和停车。按指示的灯即可,没有右转向导向灯的情况下可以视为可以右转。

  RGB颜色空间以R(Red:红)、G(Green:绿色)、 B(Blue:蓝)三种基本色为基础,进行不同程度的叠加,产生丰富而广泛的颜色,所以俗称三基色模式。在大自然中有无穷多种不同的颜色,而人眼只能分辨有限种不同的颜色,RGB棋式可表示一千六百多万种不同的颜色,在人跟看起来它非常接近大自然的颜色,故又称为自然色彩模式。红绿蓝代表可见光谱中的三种基木颜色或称为三原色,每一种颜色按其亮度的不同分为256个等级。当色光三原色重叠时,由于不同的混色比例能产生各种中间色。

  RGB颜色空间最大的优点就是直观,容易理解。缺点是R、G、B这三个分量是高度相关的,即如果一个颜色的某一个分量发生了一定程度的改变,那么这个相色很可能要发生改变;人眼对于常见的 红绿蓝三色的敏感程度是不一样的,因此RGB颜色空间的均匀性非常差,且两种颜色之间的知觉差异色差不能表示为改颜色空间中两点间的距离,但是利用线性或非线性变换,则可以从RGB颜色空间推导出其他的颜色特征空间。

  而在HSV颜色空间中,颜色的参数分别是:色调(H),饱和度(S),明度(V)。色调H,用角度度量,取值范围为0 o   36 0 o 0^{o}~360^{o}0o360o,从红色开始按逆时针方向计算,红色为0 o 0^{o}0o,绿色为12 0 o 120^{o}120o,蓝色为24 0 o 240^{o}240o。它们的补色是:黄色为6 0 o 60^{o}60o,青色为18 0 o 180^{o}180o,品红为36 0 o 360^{o}360o。饱和度S表示颜色接近光谱色的程度。一种颜色,可以看成是某种光谱色于白色混合的结果。其中光谱色所占的比例愈大,颜色接近光谱色的程度就愈高,颜色的饱和度也就愈高。饱和度高,颜色则深而艳。光谱色的白光成分为0,饱和度达到最高。通常取值范围为0 % − 100 % 0\%-100\%0%100%,值越大,颜色越饱和。明度V表示颜色明亮的程度,对于光源色,明度值与发光体的光亮度有关;对于物体色,此值和物体的透射比或反射比有关。通常取值范围为0 % 0\%0%(黑)到100 % 100\%100%(白)。相对于RGB空间,HSV空间能够非常直观的表达色彩的明暗,色调,以及鲜艳程度,方便进行颜色之间的对比。将图片从传统的RGB颜色空间转换到HSV模型空间,能够大大提高目标识别与检测的抗干扰能力,使得检测结果更为精确。

代码解释

  本设计中红绿灯检测程序主要有detectColor.py文件和TLState.py两个文件。

  在detectColor.py文件中主要是检测被TLState.py分割出来的灯的颜色,首先利用OpenCV中的cv2.cvtColor(image,cv2.COLOR_BGR2HSV)函数,将图片从BGR格式转换为HSV格式。之后利用cv2.inRange()函数设阈值,去除背景部分,再进行中值滤波,最后计算非零像素点数,取其像素点最多的那个对应的结果作为最终结果。

  在TLState.py文件中,进行灰度处理,之后利用cv2.HoughCircles()函数进行霍夫圆环检测。将检测到的圆环送入detectColor.py文件中的detectColor()函数中进行颜色检测。

实验结果

  红绿灯检测得到的结果如下图所示:

  红绿灯带箭头检测得到的结果如下图所示:

代码链接:

https://github.com/ZhiqiangHo/code-of-csdn/tree/master/Traffic%20Light%20Detection%20using%20Python%20OpenCV

相关文章
|
15天前
|
PHP 开发者 容器
PHP命名空间深度解析:避免命名冲突与提升代码组织####
本文深入探讨了PHP中命名空间的概念、用途及最佳实践,揭示其在解决全局命名冲突、提高代码可维护性方面的重要性。通过生动实例和详尽分析,本文将帮助开发者有效利用命名空间来优化大型项目结构,确保代码的清晰与高效。 ####
18 1
|
23天前
|
机器学习/深度学习 存储 人工智能
强化学习与深度强化学习:深入解析与代码实现
本书《强化学习与深度强化学习:深入解析与代码实现》系统地介绍了强化学习的基本概念、经典算法及其在深度学习框架下的应用。从强化学习的基础理论出发,逐步深入到Q学习、SARSA等经典算法,再到DQN、Actor-Critic等深度强化学习方法,结合Python代码示例,帮助读者理解并实践这些先进的算法。书中还探讨了强化学习在无人驾驶、游戏AI等领域的应用及面临的挑战,为读者提供了丰富的理论知识和实战经验。
48 5
|
1月前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
121 10
|
1月前
|
前端开发 JavaScript 开发者
揭秘前端高手的秘密武器:深度解析递归组件与动态组件的奥妙,让你代码效率翻倍!
【10月更文挑战第23天】在Web开发中,组件化已成为主流。本文深入探讨了递归组件与动态组件的概念、应用及实现方式。递归组件通过在组件内部调用自身,适用于处理层级结构数据,如菜单和树形控件。动态组件则根据数据变化动态切换组件显示,适用于不同业务逻辑下的组件展示。通过示例,展示了这两种组件的实现方法及其在实际开发中的应用价值。
36 1
|
2月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
91 2
|
2月前
|
存储 搜索推荐 数据库
运用LangChain赋能企业规章制度制定:深入解析Retrieval-Augmented Generation(RAG)技术如何革新内部管理文件起草流程,实现高效合规与个性化定制的完美结合——实战指南与代码示例全面呈现
【10月更文挑战第3天】构建公司规章制度时,需融合业务实际与管理理论,制定合规且促发展的规则体系。尤其在数字化转型背景下,利用LangChain框架中的RAG技术,可提升规章制定效率与质量。通过Chroma向量数据库存储规章制度文本,并使用OpenAI Embeddings处理文本向量化,将现有文档转换后插入数据库。基于此,构建RAG生成器,根据输入问题检索信息并生成规章制度草案,加快更新速度并确保内容准确,灵活应对法律与业务变化,提高管理效率。此方法结合了先进的人工智能技术,展现了未来规章制度制定的新方向。
42 3
|
2月前
|
SQL 监控 关系型数据库
SQL错误代码1303解析与处理方法
在SQL编程和数据库管理中,遇到错误代码是常有的事,其中错误代码1303在不同数据库系统中可能代表不同的含义
|
2月前
|
SQL 安全 关系型数据库
SQL错误代码1303解析与解决方案:深入理解并应对权限问题
在数据库管理和开发过程中,遇到错误代码是常见的事情,每个错误代码都代表着一种特定的问题
|
3月前
|
敏捷开发 安全 测试技术
软件测试的艺术:从代码到用户体验的全方位解析
本文将深入探讨软件测试的重要性和实施策略,通过分析不同类型的测试方法和工具,展示如何有效地提升软件质量和用户满意度。我们将从单元测试、集成测试到性能测试等多个角度出发,详细解释每种测试方法的实施步骤和最佳实践。此外,文章还将讨论如何通过持续集成和自动化测试来优化测试流程,以及如何建立有效的测试团队来应对快速变化的市场需求。通过实际案例的分析,本文旨在为读者提供一套系统而实用的软件测试策略,帮助读者在软件开发过程中做出更明智的决策。
|
3月前
|
SQL 人工智能 机器人
遇到的代码部份解析
/ 模拟后端返回的数据
20 0

推荐镜像

更多