DCGAN-深度卷积生成对抗网络-转置卷积

简介: DCGAN-深度卷积生成对抗网络-转置卷积

DCGAN中的DC也就是deep convolution,也就是将对抗生成网络放入到卷积神经网络中(对卷积神经网络不了解的可参考https://zhuanlan.zhihu.com/p/40709115),去实现其功能。或则说将卷积神经网络应用在了我们的对抗生成网络中。在DCGAN中主要有以下五个关键点:

1.  将pooling层convolutions替代,也就是只有卷积层,没有池化层(对于判别模型:由于没有了池化层,我们得容许判别网络学习自己的空间下采样,使其更能合适的去判别输入的数据。对于生成模型:我们是从特征数据生成一张图片(之后再输入到判别网络中去),也就是一个反卷积的过程,在这个过程中,我们需要网络学习自己的空间上采样)

2. 针对传统的GAN生成的数据差异性很小(原因:generator网络将所有的样本都收敛到同一个点了),使用batch normalization来解决初始化差的问题,以及梯度在传播过程中的消失等问题。

3. 在CNN中移除全连接层。

4. 在generator的除了输出层外的所有层使用ReLu,输出层采用tanh。

5. 在discriminator的所有层上使用LeakyReLU。

生成网络构建示例:

       首先我们初始化一个100维的向量(噪音向量,其值没有任何意义),首先经过一个[100, 4*4*1024]的神经网络,再将其reshape一下,转化为上图所示的三维结构。再此网络进行反卷积,便可一步一步得到一张64*64*3的图片。如果不了解反卷积可以参考以下博文:https://buptldy.github.io/2016/10/29/2016-10-29-deconv/。简要地来简述卷积与反卷积:

       卷积:我们假设图片为4*4的,卷积核为3*3的,步长为1。我们把3×3的卷积核展成一个如下所示的的稀疏矩阵 其中非0元素 wi,j表示卷积核的第 i 行和第 j 列。

               

我们再把4×4的输入特征展成的矩阵,那么,也就是的矩阵乘以的矩阵,最终变为的矩阵,将它重新排列2×2的输出特征就得到最终的结果

       反卷积:反卷积又被称为Transposed(转置) Convolution,的矩阵,乘以之前卷积过后的矩阵, 将会得到的矩阵,再重新排列一下将会得到的矩阵,从而完成反卷积。

       在一些深度学习网络的开源框架中并不是通过这种这个转换方法来计算卷积的,因为这个转换会存在很多无用的0乘操作,Caffe中具体实现卷积计算的方法可参考Implementing convolution as a matrix multiplication

判别网络构建示例:

其主要就是卷积神经网络判别图像类别的工作。

我的微信公众号名称:深度学习与先进智能决策

微信公众号ID:MultiAgent1024

公众号介绍:主要研究强化学习、计算机视觉、深度学习、机器学习等相关内容,分享学习过程中的学习笔记和心得!期待您的关注,欢迎一起学习交流进步!

 

相关文章
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
17天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
18 2
|
17天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
24 1
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
21天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
28天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
82 1
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
10天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。

热门文章

最新文章