Linux TCP作为服务器连接的单连接、Select、Poll和Epoll方式:C/C++实现高效的服务器通信

简介: 在Linux服务器开发中,TCP(Transmission Control Protocol)作为面向连接的通信方式,为实现可靠的服务器通信提供了强大支持。不同的服务器连接方式,如单连接、Select、Poll和Epoll,各有优势,可以根据连接数和性能需求选择合适的方式。本文将深入探讨这四种方式的实现原理,并给出C/C++代码例子,帮助读者更好地理解和使用这些方式。

1. 单连接方式

单连接方式是最简单的方式,每个客户端连接都创建一个独立的线程或进程来处理数据传输。这种方式适用于连接数较少的情况,代码实现相对简单。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>

int main() {
   
    int server_socket = socket(AF_INET, SOCK_STREAM, 0);
    if (server_socket == -1) {
   
        perror("socket");
        exit(EXIT_FAILURE);
    }

    struct sockaddr_in server_addr;
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8888);
    server_addr.sin_addr.s_addr = INADDR_ANY;

    if (bind(server_socket, (struct sockaddr*)&server_addr, sizeof(server_addr)) == -1) {
   
        perror("bind");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    if (listen(server_socket, 5) == -1) {
   
        perror("listen");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    while (1) {
   
        struct sockaddr_in client_addr;
        socklen_t client_addr_len = sizeof(client_addr);
        int client_socket = accept(server_socket, (struct sockaddr*)&client_addr, &client_addr_len);
        if (client_socket == -1) {
   
            perror("accept");
            continue;
        }

        char buffer[1024];
        int n = recv(client_socket, buffer, sizeof(buffer), 0);
        if (n <= 0) {
   
            perror("recv");
            close(client_socket);
            continue;
        }

        // 处理请求
        char* response = "Hello, I am the server!";
        send(client_socket, response, strlen(response), 0);
        close(client_socket);
    }

    close(server_socket);
    return 0;
}

2. Select方式

Select是最古老的I/O复用技术,它使用fd_set集合来监视文件描述符上的I/O事件。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>

#define MAX_CLIENTS 5

int main() {
   
    int server_socket = socket(AF_INET, SOCK_STREAM, 0);
    if (server_socket == -1) {
   
        perror("socket");
        exit(EXIT_FAILURE);
    }

    struct sockaddr_in server_addr;
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8888);
    server_addr.sin_addr.s_addr = INADDR_ANY;

    if (bind(server_socket, (struct sockaddr*)&server_addr, sizeof(server_addr)) == -1) {
   
        perror("bind");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    if (listen(server_socket, 5) == -1) {
   
        perror("listen");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    int client_sockets[MAX_CLIENTS] = {
   0};
    fd_set read_fds;
    int max_fd;

    while (1) {
   
        FD_ZERO(&read_fds);
        FD_SET(server_socket, &read_fds);
        max_fd = server_socket;

        for (int i = 0; i < MAX_CLIENTS; i++) {
   
            if (client_sockets[i] > 0) {
   
                FD_SET(client_sockets[i], &read_fds);
                if (client_sockets[i] > max_fd) {
   
                    max_fd = client_sockets[i];
                }
            }
        }

        select(max_fd + 1, &read_fds, NULL, NULL, NULL);

        if (FD_ISSET(server_socket, &read_fds)) {
   
            struct sockaddr_in client_addr;
            socklen_t client_addr_len = sizeof(client_addr);
            int client_socket = accept(server_socket, (struct sockaddr*)&client_addr, &client_addr_len);
            if (client_socket == -1) {
   
                perror("accept");
                continue;
            }

            for (int i = 0; i < MAX_CLIENTS; i++) {
   
                if (client_sockets[i] == 0) {
   
                    client_sockets[i] = client_socket;
                    break;
                }
            }
        }

        for (int i = 0; i < MAX_CLIENTS; i++) {
   
            if (client_sockets[i] > 0 && FD_ISSET(client_sockets[i], &read_fds)) {
   
                char buffer[1024];
                int n = recv(client_sockets[i], buffer, sizeof(buffer), 0);
                if (n <= 0) {
   
                    close(client_sockets[i]);
                    client_sockets[i] = 0;
                } else {
   
                    // 处理请求
                    char* response = "Hello, I am the server!";
                    send(client_sockets[i], response, strlen(response), 0);
                }
            }
        }
    }

    close(server_socket);
    return 0;
}

3. Poll方式

Poll是改进的I/O复用技术,使用pollfd结构体数组来监视文件描述符上的I/O事件。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <poll.h>

#define MAX_CLIENTS 5

int main() {
   
    int server_socket = socket(AF_INET, SOCK_STREAM, 0);
    if (server_socket == -1) {
   
        perror("socket");
        exit(EXIT_FAILURE);
    }

    struct sockaddr_in server_addr;
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8888);
    server_addr.sin_addr.s_addr = INADDR_ANY;

    if (bind(server_socket, (struct sockaddr*)&server_addr, sizeof(server_addr)) == -1) {
   
        perror("bind");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    if (listen(server_socket, 5) == -1) {
   
        perror("listen");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    struct pollfd fds[MAX_CLIENTS + 1];
    memset(fds, 0, sizeof(fds));

    fds[0].fd = server_socket;
    fds[0].events = POLLIN;

    while (1) {
   
        int num_fds = poll(fds, MAX_CLIENTS + 1, -1);
        if (

num_fds == -1) {
   
            perror("poll");
            continue;
        }

        if (fds[0].revents & POLLIN) {
   
            struct sockaddr_in client_addr;
            socklen_t client_addr_len = sizeof(client_addr);
            int client_socket = accept(server_socket, (struct sockaddr*)&client_addr, &client_addr_len);
            if (client_socket == -1) {
   
                perror("accept");
                continue;
            }

            for (int i = 1; i < MAX_CLIENTS + 1; i++) {
   
                if (fds[i].fd == 0) {
   
                    fds[i].fd = client_socket;
                    fds[i].events = POLLIN;
                    break;
                }
            }
        }

        for (int i = 1; i < MAX_CLIENTS + 1; i++) {
   
            if (fds[i].fd > 0 && (fds[i].revents & POLLIN)) {
   
                char buffer[1024];
                int n = recv(fds[i].fd, buffer, sizeof(buffer), 0);
                if (n <= 0) {
   
                    close(fds[i].fd);
                    fds[i].fd = 0;
                } else {
   
                    // 处理请求
                    char* response = "Hello, I am the server!";
                    send(fds[i].fd, response, strlen(response), 0);
                }
            }
        }
    }

    close(server_socket);
    return 0;
}

4. Epoll方式

Epoll是Linux特有的高效I/O复用技术,使用事件驱动的方式来监视文件描述符上的I/O事件。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/epoll.h>

#define MAX_EVENTS 10

int main() {
   
    int server_socket = socket(AF_INET, SOCK_STREAM, 0);
    if (server_socket == -1) {
   
        perror("socket");
        exit(EXIT_FAILURE);
    }

    struct sockaddr_in server_addr;
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(8888);
    server_addr.sin_addr.s_addr = INADDR_ANY;

    if (bind(server_socket, (struct sockaddr*)&server_addr, sizeof(server_addr)) == -1) {
   
        perror("bind");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    if (listen(server_socket, 5) == -1) {
   
        perror("listen");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    int epoll_fd = epoll_create1(0);
    if (epoll_fd == -1) {
   
        perror("epoll_create1");
        close(server_socket);
        exit(EXIT_FAILURE);
    }

    struct epoll_event event;
    event.events = EPOLLIN;
    event.data.fd = server_socket;
    if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, server_socket, &event) == -1) {
   
        perror("epoll_ctl");
        close(server_socket);
        close(epoll_fd);
        exit(EXIT_FAILURE);
    }

    struct epoll_event events[MAX_EVENTS];

    while (1) {
   
        int num_events = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);
        if (num_events == -1) {
   
            perror("epoll_wait");
            continue;
        }

        for (int i = 0; i < num_events; i++) {
   
            if (events[i].data.fd == server_socket) {
   
                struct sockaddr_in client_addr;
                socklen_t client_addr_len = sizeof(client_addr);
                int client_socket = accept(server_socket, (struct sockaddr*)&client_addr, &client_addr_len);
                if (client_socket == -1) {
   
                    perror("accept");
                    continue;
                }

                event.events = EPOLLIN;
                event.data.fd = client_socket;
                if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, client_socket, &event) == -1) {
   
                    perror("epoll_ctl");
                    close(client_socket);
                }
            } else {
   
                int client_socket = events[i].data.fd;
                char buffer[1024];
                int n = recv(client_socket, buffer, sizeof(buffer), 0);
                if (n <= 0) {
   
                    epoll_ctl(epoll_fd, EPOLL_CTL_DEL, client_socket, NULL);
                    close(client_socket);
                } else {
   
                    // 处理请求
                    char* response = "Hello, I am the server!";
                    send(client_socket, response, strlen(response), 0);
                }
            }
        }
    }

    close(server_socket);
    close(epoll_fd);
    return 0;
}

5.选择适合的服务器连接方式

单连接方式适用于连接数较少的情况,服务器性能要求较低。
Select方式适用于连接数少于1000个的情况,服务器性能要求中等。
Poll方式适用于连接数在1000-10000个的情况,服务器性能要求较高。
Epoll方式适用于连接数超过10000个的情况,服务器性能要求非常高。

6. 结论

TCP作为服务器连接方式在Linux服务器开发中得到广泛应用。不同的连接方式,如单连接、Select、Poll和Epoll,各有优势,可以根据连接数和性能需求选择合适的方式。本文给出了C/C++代码例子,帮助读者更好地理解和使用这些方式。在实际的服务器开发中,选择合适的连接方式可以提高服务器的性能和可扩展性,确保服务器通信的稳定运行。

相关实践学习
CentOS 7迁移Anolis OS 7
龙蜥操作系统Anolis OS的体验。Anolis OS 7生态上和依赖管理上保持跟CentOS 7.x兼容,一键式迁移脚本centos2anolis.py。本文为您介绍如何通过AOMS迁移工具实现CentOS 7.x到Anolis OS 7的迁移。
目录
相关文章
|
11天前
|
运维 监控 Linux
服务器管理面板大盘点: 8款开源面板助你轻松管理Linux服务器
在数字化时代,服务器作为数据存储和计算的核心设备,其管理效率与安全性直接关系到业务的稳定性和可持续发展。随着技术的不断进步,开源社区涌现出众多服务器管理面板,这些工具以其强大的功能、灵活的配置和友好的用户界面,极大地简化了Linux服务器的管理工作。本文将详细介绍8款开源的服务器管理面板,包括Websoft9、宝塔、cPanel、1Panel等,旨在帮助运维人员更好地选择和使用这些工具,提升服务器管理效率。
|
19天前
|
安全 算法 Linux
Linux 服务器还有漏洞?建议使用 OpenVAS 日常检查!
在数字化时代,Linux 服务器的安全至关重要。OpenVAS 是一款优秀的开源漏洞扫描工具,可以帮助及时发现并修复服务器中的安全隐患。本文将介绍 OpenVAS 的主要功能、使用方法及应对漏洞的措施,帮助用户加强服务器安全管理,确保企业数字化安全。
44 7
|
22天前
|
监控 Ubuntu Linux
使用VSCode通过SSH远程登录阿里云Linux服务器异常崩溃
通过 VSCode 的 Remote - SSH 插件远程连接阿里云 Ubuntu 22 服务器时,会因高 CPU 使用率导致连接断开。经排查发现,VSCode 连接根目录 ".." 时会频繁调用"rg"(ripgrep)进行文件搜索,导致 CPU 负载过高。解决方法是将连接目录改为"root"(或其他具体的路径),避免不必要的文件检索,从而恢复正常连接。
|
25天前
|
缓存 Unix Linux
服务器linux!!!
本文介绍了计算机的演变历史、硬件基础知识及服务器相关知识。从电子管时代的ENIAC到冯-诺伊曼架构,再到现代计算机系统组成,详细讲解了计算机的发展历程。此外,文章还介绍了服务器的分类、品牌、硬件组成以及IDC机房的上架流程,为读者提供了全面的技术背景知识。
38 0
服务器linux!!!
|
27天前
|
人工智能 安全 Linux
|
29天前
|
Linux 数据库
Linux服务如何实现服务器重启后的服务延迟自启动?
【10月更文挑战第25天】Linux服务如何实现服务器重启后的服务延迟自启动?
145 3
|
27天前
|
Linux
Linux 修改服务器时间
【10月更文挑战第27天】Linux 修改服务器时间
65 0
|
12天前
|
人工智能 弹性计算 编解码
阿里云GPU云服务器性能、应用场景及收费标准和活动价格参考
GPU云服务器作为阿里云提供的一种高性能计算服务,通过结合GPU与CPU的计算能力,为用户在人工智能、高性能计算等领域提供了强大的支持。其具备覆盖范围广、超强计算能力、网络性能出色等优势,且计费方式灵活多样,能够满足不同用户的需求。目前用户购买阿里云gpu云服务器gn5 规格族(P100-16G)、gn6i 规格族(T4-16G)、gn6v 规格族(V100-16G)有优惠,本文为大家详细介绍阿里云gpu云服务器的相关性能及收费标准与最新活动价格情况,以供参考和选择。
|
17天前
|
机器学习/深度学习 人工智能 弹性计算
什么是阿里云GPU云服务器?GPU服务器优势、使用和租赁费用整理
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等多种场景。作为亚太领先的云服务提供商,阿里云的GPU云服务器具备灵活的资源配置、高安全性和易用性,支持多种计费模式,帮助企业高效应对计算密集型任务。
|
19天前
|
存储 分布式计算 固态存储
阿里云2核16G、4核32G、8核64G配置云服务器租用收费标准与活动价格参考
2核16G、8核64G、4核32G配置的云服务器处理器与内存比为1:8,这种配比的云服务器一般适用于数据分析与挖掘,Hadoop、Spark集群和数据库,缓存等内存密集型场景,因此,多为企业级用户选择。目前2核16G配置按量收费最低收费标准为0.54元/小时,按月租用标准收费标准为260.44元/1个月。4核32G配置的阿里云服务器按量收费标准最低为1.08元/小时,按月租用标准收费标准为520.88元/1个月。8核64G配置的阿里云服务器按量收费标准最低为2.17元/小时,按月租用标准收费标准为1041.77元/1个月。本文介绍这些配置的最新租用收费标准与活动价格情况,以供参考。