【多目标优化算法】多目标蚱蜢优化算法(Matlab代码实现)

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【多目标优化算法】多目标蚱蜢优化算法(Matlab代码实现)

💥1 概述

摘要本文从自然界中草蜢群的导航出发,提出了一种新的多目标算法。首先采用数学模型来模拟游泳过程中个体之间的相互作用,包括吸引力、排斥力和舒适区。然后提出了一种机制来使用该模型在单目标搜索空间中逼近全局最优。然后,将存档和目标选择技术集成到算法中,以估计多目标问题的帕累托最优前沿。为了测试所提出算法的性能,使用了一组不同的标准多目标测试问题。该结果与进化多目标优化文献中最受欢迎和最新的算法进行了比较,使用三个性能指标进行了定量和定性分析。结果表明,在获得的帕累托最优解及其分布的准确性方面,所提出的算法能够提供非常有竞争力的结果。


在这个星球上人类存在之前,大自然一直在不断地利用进化来解决具有挑战性的问题。因此,从自然中获得灵感来解决不同的挑战性问题是合理的。在优化领域,1977年,霍兰德提出了一个革命性的想法,在计算机中模拟自然界的进化概念,以解决优化问题[1]就在那一刻,最著名的启发式算法——遗传算法(GA)[2]应运而生,并为解决不同研究领域中的挑战性和复杂问题开辟了一条新途径。


GA算法的一般思想非常简单。它模拟了自然界中基因的选择、重组和突变。事实上,达尔文的进化论是这个算法的主要灵感来源。在遗传算法中,优化过程首先创建一组随机解作为给定优化问题的候选解(个体)。


问题的每个变量都被认为是一个基因,而这组变量类似于染色体。与自然相似,成本函数定义了每条染色体的适合度。整套解决方案被视为一个总体。当计算染色体的适合度时,将随机选择最佳染色体以创建下一个群体。在遗传算法中,选择概率较高的最适者,以类似于自然界的方式参与创造下一个种群。


详细文章讲解见第4部分。


📚2 运行结果

部分代码:

clc;
clear;
close all;
% Change these details with respect to your problem%%%%%%%%%%%%%%
ObjectiveFunction=@ZDT1;
dim=5;
lb=0;
ub=1;
obj_no=2;
if size(ub,2)==1
    ub=ones(1,dim)*ub;
    lb=ones(1,dim)*lb;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
flag=0;
if (rem(dim,2)~=0)
    dim = dim+1;
    ub = [ub, 1];
    lb = [lb, 0];
    flag=1;
end
max_iter=100;
N=200;
ArchiveMaxSize=100;
Archive_X=zeros(100,dim);
Archive_F=ones(100,obj_no)*inf;
Archive_member_no=0;
%Initialize the positions of artificial whales
GrassHopperPositions=initialization(N,dim,ub,lb);
TargetPosition=zeros(dim,1);
TargetFitness=inf*ones(1,obj_no);
cMax=1;
cMin=0.00004;
%calculate the fitness of initial grasshoppers
for iter=1:max_iter
    for i=1:N
        Flag4ub=GrassHopperPositions(:,i)>ub';
        Flag4lb=GrassHopperPositions(:,i)<lb';
        GrassHopperPositions(:,i)=(GrassHopperPositions(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
        GrassHopperFitness(i,:)=ObjectiveFunction(GrassHopperPositions(:,i)');
        if dominates(GrassHopperFitness(i,:),TargetFitness)
            TargetFitness=GrassHopperFitness(i,:);
            TargetPosition=GrassHopperPositions(:,i);
        end
    end
    [Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, GrassHopperPositions, GrassHopperFitness, Archive_member_no);
    if Archive_member_no>ArchiveMaxSize
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
        [Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
    else
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    end
    Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    index=RouletteWheelSelection(1./Archive_mem_ranks);
    if index==-1
        index=1;
    end
    TargetFitness=Archive_F(index,:);
    TargetPosition=Archive_X(index,:)';
    c=cMax-iter*((cMax-cMin)/max_iter); % Eq. (3.8) in the paper
    for i=1:N
        temp= GrassHopperPositions;
        for k=1:2:dim
            S_i=zeros(2,1);
            for j=1:N
                if i~=j
                    Dist=distance(temp(k:k+1,j), temp(k:k+1,i));
                    r_ij_vec=(temp(k:k+1,j)-temp(k:k+1,i))/(Dist+eps);
                    xj_xi=2+rem(Dist,2);
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Eq. (3.2) in the paper 
                    s_ij=((ub(k:k+1)' - lb(k:k+1)') .*c/2)*S_func(xj_xi).*r_ij_vec;
                    S_i=S_i+s_ij;
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                end
            end
            S_i_total(k:k+1, :) = S_i;
        end
        X_new=c*S_i_total'+(TargetPosition)'; % Eq. (3.7) in the paper
        GrassHopperPositions_temp(i,:)=X_new';
    end
    % GrassHopperPositions
    GrassHopperPositions=GrassHopperPositions_temp';
    disp(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
end
if (flag==1)
    TargetPosition = TargetPosition(1:dim-1);
end
figure
Draw_ZDT1();
hold on
plot(Archive_F(:,1),Archive_F(:,2),'ro','MarkerSize',8,'markerfacecolor','k');
legend('True PF','Obtained PF');
title('MOGOA');
set(gcf, 'pos', [403   466   230   200])


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码及详细文章讲解

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
8天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
5天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
9天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
21天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
29天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1月前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
1月前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。