YOLOV5轻量化改进-MobileNetV3替换骨干网络

简介: YOLOV5轻量化改进-MobileNetV3替换骨干网络

1、ymal文件修改

将models文件下yolov5s.py复制重命名如下图所示:



2、接着将如下代码替换,diamagnetic如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32
   # Mobilenetv3-small backbone
   # MobileNetV3_InvertedResidual [out_ch, hid_ch, k_s, stride, SE, HardSwish]
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv_BN_HSwish, [16, 2]],                              # 0-p1/2
   [-1, 1, MobileNetV3_InvertedResidual, [16,  16, 3, 2, 1, 0]],  # 1-p2/4
   [-1, 1, MobileNetV3_InvertedResidual, [24,  72, 3, 2, 0, 0]],  # 2-p3/8
   [-1, 1, MobileNetV3_InvertedResidual, [24,  88, 3, 1, 0, 0]],  # 3
   [-1, 1, MobileNetV3_InvertedResidual, [40,  96, 5, 2, 1, 1]],  # 4-p4/16
   [-1, 1, MobileNetV3_InvertedResidual, [40, 240, 5, 1, 1, 1]],  # 5
   [-1, 1, MobileNetV3_InvertedResidual, [40, 240, 5, 1, 1, 1]],  # 6
   [-1, 1, MobileNetV3_InvertedResidual, [48, 120, 5, 1, 1, 1]],  # 7
   [-1, 1, MobileNetV3_InvertedResidual, [48, 144, 5, 1, 1, 1]],  # 8
   [-1, 1, MobileNetV3_InvertedResidual, [96, 288, 5, 2, 1, 1]],  # 9-p5/32
   [-1, 1, MobileNetV3_InvertedResidual, [96, 576, 5, 1, 1, 1]],  # 10
   [-1, 1, MobileNetV3_InvertedResidual, [96, 576, 5, 1, 1, 1]],  # 11
  ]
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [96, 1, 1]],  # 12
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [144, False]],  # 15
   [-1, 1, Conv, [144, 1, 1]], # 16
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 3], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [168, False]],  # 19 (P3/8-small)
   [-1, 1, Conv, [168, 3, 2]],
   [[-1, 16], 1, Concat, [1]], # cat head P4
   [-1, 3, C3, [312, False]],  # 22 (P4/16-medium)
   [-1, 1, Conv, [312, 3, 2]],
   [[-1, 12], 1, Concat, [1]], # cat head P5
   [-1, 3, C3, [408, False]],  # 25 (P5/32-large)
   [[19, 22, 25], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


data文件也类似操作,如下图所示:



2、common.py文件修改

在common.py文件下方中加入如下代码:

# Mobilenetv3Small
class SeBlock(nn.Module):
    def __init__(self, in_channel, reduction=4):
        super().__init__()
        self.Squeeze = nn.AdaptiveAvgPool2d(1)
        self.Excitation = nn.Sequential()
        self.Excitation.add_module('FC1', nn.Conv2d(in_channel, in_channel // reduction, kernel_size=1))  # 1*1卷积与此效果相同
        self.Excitation.add_module('ReLU', nn.ReLU())
        self.Excitation.add_module('FC2', nn.Conv2d(in_channel // reduction, in_channel, kernel_size=1))
        self.Excitation.add_module('Sigmoid', nn.Sigmoid())
    def forward(self, x):
        y = self.Squeeze(x)
        ouput = self.Excitation(y)
        return x * (ouput.expand_as(x))
class Conv_BN_HSwish(nn.Module):
    """
    This equals to
    def conv_3x3_bn(inp, oup, stride):
        return nn.Sequential(
            nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
            nn.BatchNorm2d(oup),
            h_swish()
        )
    """
    def __init__(self, c1, c2, stride):
        super(Conv_BN_HSwish, self).__init__()
        self.conv = nn.Conv2d(c1, c2, 3, stride, 1, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.Hardswish()
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
class MobileNetV3_InvertedResidual(nn.Module):
    def __init__(self, inp, oup, hidden_dim, kernel_size, stride, use_se, use_hs):
        super(MobileNetV3_InvertedResidual, self).__init__()
        assert stride in [1, 2]
        self.identity = stride == 1 and inp == oup
        if inp == hidden_dim:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim,
                          bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.Hardswish() if use_hs else nn.ReLU(),
                # Squeeze-and-Excite
                SeBlock(hidden_dim) if use_se else nn.Sequential(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.Hardswish() if use_hs else nn.ReLU(),
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim,
                          bias=False),
                nn.BatchNorm2d(hidden_dim),
                # Squeeze-and-Excite
                SeBlock(hidden_dim) if use_se else nn.Sequential(),
                nn.Hardswish() if use_hs else nn.ReLU(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )
    def forward(self, x):
        y = self.conv(x)
        if self.identity:
            return x + y
        else:
            return y



3、yolo.py文件修改

4、在yolo.py的parse_model函数中添加如下代码

Conv_BN_HSwish, MobileNetV3_InvertedResidual



4、train文件修改

在train文件进行如下路径修改,如下图所示:



接着对train.py运行训练,如下图所示:



上文如有错误,恳请各位大佬指正。


相关文章
|
9月前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
309 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
9月前
|
机器学习/深度学习 移动开发 测试技术
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
332 1
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
|
9月前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
447 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
9月前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
303 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
9月前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
184 1
|
9月前
|
机器学习/深度学习 编解码 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
219 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
RT-DETR改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
RT-DETR改进策略【模型轻量化】| 替换华为的极简主义骨干网络:VanillaNet
228 0
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
245 17
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
207 10
|
11月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章