【BP回归预测】基于BP神经网络温度预测附Matlab代码

简介: 【BP回归预测】基于BP神经网络温度预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

随着科技的不断发展,人们对天气变化的关注度也越来越高。准确地预测气温对于农业、能源、交通等领域具有重要意义。传统的气温预测方法往往依赖于统计学模型或物理模型,但这些方法往往受到许多因素的影响,导致预测结果不够准确。为了提高气温预测的准确性,我们可以借助人工智能中的神经网络算法,特别是BP神经网络。

BP神经网络是一种常用的人工神经网络算法,它可以通过学习已知的输入和输出数据,建立一个模型来预测未知的输出数据。在气温预测中,我们可以将历史的气象数据作为输入,将未来的气温作为输出,通过训练神经网络模型来实现准确的温度预测。

首先,我们需要收集大量的气象数据,包括温度、湿度、风速等信息。这些数据可以从各种气象观测站、卫星、气象预报等渠道获取。接下来,我们需要对数据进行预处理,包括数据清洗、缺失值处理、特征选择等。这些步骤可以帮助我们提高数据的质量和准确性。

然后,我们需要将数据划分为训练集和测试集。训练集用于训练BP神经网络模型,测试集用于评估模型的准确性。在划分数据集时,我们需要注意保持数据的随机性,以避免模型对特定数据集过拟合的情况。

接下来,我们可以开始构建BP神经网络模型。模型的输入层包括历史的气象数据,输出层包括未来的气温。中间的隐藏层可以根据实际情况设置,通常越多的隐藏层可以提高模型的学习能力,但也会增加计算复杂度。在构建模型时,我们需要选择适当的激活函数、学习率、迭代次数等参数,以获得最佳的预测效果。

一旦模型构建完成,我们就可以开始训练模型。训练过程中,模型会根据输入和输出数据之间的误差,通过反向传播算法不断调整神经网络的权重和偏置,以最小化误差。训练的过程可能需要一些时间,但通过适当的调整参数和增加训练数据,我们可以提高模型的准确性和稳定性。

完成模型训练后,我们可以使用测试集来评估模型的性能。常用的评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)等。通过比较模型预测结果与实际观测值,我们可以判断模型的准确性和可靠性。

除了温度预测,BP神经网络还可以应用于其他领域的回归预测问题,如股票价格预测、销售量预测等。它的优势在于可以处理非线性关系和复杂的数据模式,提供更准确的预测结果。

综上所述,基于BP神经网络的温度预测是一种有效的方法,可以提高气温预测的准确性。通过合理的数据处理、模型构建和训练,我们可以建立一个可靠的预测模型,为农业、能源、交通等领域提供准确的气温信息,为人们的生活和工作提供更多便利。

    本次仿真,预测模型为8*8*8*1,输入数据为359天数据(一个小时测一个数据,一天数据为24)。其中350天数据做训练样本,用来训练BP网络模型的权值和阈值,4天用来做测试样本,用来测试3天左右的温湿度预测值。

      本次训练效果比较上次仿真较为准确,判定系数可以达到0.8左右(越靠近1表明仿真效果越好),预测值与实际值点状图基本围绕在主对角线左右,MSE平方误差可以达到0.01,BP网络预测输出图也可以看出预测值的变化趋势基本与期望值一致。

⛄ 部分代码

%该函数功能为返回预测与实际值之间的绝对值误差和function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)%该函数用来计算适应度值%x          input     个体%inputnum   input     输入层节点数%outputnum  input     隐含层节点数%net        input     网络%inputn     input     训练输入数据%outputn    input     训练输出数据%error      output    个体适应度值%提取w1=x(1:inputnum*hiddennum);B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);%网络进化参数net.trainParam.epochs=50;net.trainParam.lr=0.1;net.trainParam.goal=0.00001;net.trainParam.show=100;net.trainParam.showWindow=0; %网络权值赋值net.iw{1,1}=reshape(w1,hiddennum,inputnum);%将w1排列成hiddennum*inputnum的形式,按列取数net.lw{2,1}=reshape(w2,outputnum,hiddennum);net.b{1}=reshape(B1,hiddennum,1);net.b{2}=B2;%网络训练net=train(net,inputn,outputn);an=sim(net,inputn);error=sum(abs(an-outputn));

⛄ 运行结果

⛄ 参考文献

[1] 童飞.基于BP神经网络的水上交通事故预测及MATLAB实现[D].武汉理工大学[2023-08-01].DOI:10.7666/d.y813046.

[2] 欧阳钧,王爱枝.基于Matlab的BP神经网络在大气污染物浓度预测中的应用[J].环境科学与管理, 2009, 34(11):5.DOI:10.3969/j.issn.1673-1212.2009.11.047.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
10天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
28天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
2月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
3月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
66 2
|
3月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。

热门文章

最新文章