深入spaCy: 高级教程

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 在我们的初级和中级spaCy教程中,我们已经覆盖了一些基本和中级的spaCy主题。在这篇文章中,我们将深入探讨spaCy的高级主题,包括扩展属性、自定义词汇特性和处理管道。

一、扩展属性

spaCy允许为DocTokenSpan对象定义自定义属性。这些属性可以在处理管道中的不同步骤之间传递信息。下面是一个示例,它定义了一个新的Token属性is_fruit,该属性检查token的文本是否在给定的水果列表中:

from spacy.tokens import Token

# Add the property
Token.set_extension("is_fruit", getter=lambda token: token.text in ("apple", "banana", "cherry"))

# Process some text
nlp = spacy.load("en_core_web_sm")
doc = nlp("I have an apple.")

# Check the custom attribute
print([(token.text, token._.is_fruit) for token in doc])

二、自定义词汇特性

除了自定义属性,spaCy还允许您添加自定义词汇特性。这些特性与词汇表中的条目关联,可以在整个应用程序中访问。以下示例向词汇表添加了一个is_fruit特性:

from spacy.tokens import Doc
from spacy.vocab import Vocab

# Define the getter function
def get_is_fruit(word):
    return word.text in ("apple", "banana", "cherry")

# Add the property
Vocab.set_extension("is_fruit", getter=get_is_fruit)

# Process some text
nlp = spacy.load("en_core_web_sm")
doc = nlp("I have an apple.")

# Check the custom attribute
print([(token.text, token.vocab._.is_fruit(token)) for token in doc])

三、处理管道

spaCy的处理管道是一个由各种处理步骤组成的序列,这些步骤按照定义的顺序执行。你可以添加自己的步骤到管道中,并且可以控制它们的顺序。

以下代码定义了一个新的处理步骤,它将每个处理的文档的长度打印到控制台:

def print_length(doc):
    print("Document length:", len(doc))
    return doc

nlp = spacy.load("en_core_web_sm")

# Add the component first in the pipeline
nlp.add_pipe(print_length, first=True)

doc = nlp("This is a sentence.")

在这个高级教程中,我们深入了解了spaCy的一些高级功能,包括扩展属性、自定义词汇特性和处理管道。这些功能使得spaCy更加灵活,能够适应各种各样的NLP任务和工作流程。

相关文章
|
自然语言处理 算法 Python
掌握SpaCy:初级指南
SpaCy是一个非常强大的Python自然语言处理库,它包含了众多强大功能,如词性标注、命名实体识别、依赖关系解析等等。这篇文章的目标是帮助你了解SpaCy的基本功能和如何使用。
|
机器学习/深度学习 自然语言处理 数据可视化
nlp入门之spaCy工具的使用
本文作为nlp开山篇的第四篇,简要介绍了spaCy工具的用法
|
机器学习/深度学习 自然语言处理 数据可视化
深入理解SpaCy:中级指南
在初级教程中,我们介绍了SpaCy库的一些基本特性和功能。在这篇中级指南中,我们将深入学习一些更高级的特性,包括词向量、依赖性解析、和自定义组件。
|
自然语言处理
自然语言处理工具Spacy使用笔记
自然语言处理工具Spacy使用笔记
|
自然语言处理 API Docker
spacy教程(持续更新ing...)
本文介绍spacy模型的使用方式,即spacy的API使用教程。spacy包的API基本都要靠特定模型(trained pipeline)来使用,本文主要用英文(en_core_web_sm)和中文(zh_core_web_sm)来做示例,毕竟我就只会这两种语言。 spacy模型官网:Trained Models & Pipelines · spaCy Models Documentation
|
数据采集 机器人 Python
Py之cx_Freeze:Python库之cx_Freeze库(程序打包)简介、安装、使用方法详细攻略—案例之实现机器人在线24小时智能翻译
Py之cx_Freeze:Python库之cx_Freeze库(程序打包)简介、安装、使用方法详细攻略—案例之实现机器人在线24小时智能翻译
Py之cx_Freeze:Python库之cx_Freeze库(程序打包)简介、安装、使用方法详细攻略—案例之实现机器人在线24小时智能翻译
Py之MT:Multithreaded的简介、引入、使用方法之详细攻略(一)
Py之MT:Multithreaded的简介、引入、使用方法之详细攻略
Py之MT:Multithreaded的简介、引入、使用方法之详细攻略(一)
|
程序员 Python
Py之MT:Multithreaded的简介、引入、使用方法之详细攻略(一)
Py之MT:Multithreaded的简介、引入、使用方法之详细攻略
Py之MT:Multithreaded的简介、引入、使用方法之详细攻略(一)
|
Docker 容器 网络协议
实战教程丨手把手教您在 Raspberry Pi 上设置集群(二)
有什么比在 Raspberry Pi 上安装 Docker Engine (CE) 18.09 更好的方式来表达“Happy Pi Day”呢?本文将引导您完成在 Pi 上安装 Docker Engine 18.09 的完整过程。
2137 0
|
算法 计算机视觉 Windows
(3两个例子)从零开始的嵌入式图像图像处理(PI+QT+OpenCV)实战演练
从零开始的嵌入式图像图像处理(PI+QT+OpenCV)实战演练 1综述2环境架设http://www.cnblogs.
1486 0
(3两个例子)从零开始的嵌入式图像图像处理(PI+QT+OpenCV)实战演练