软件测试|Python科学计算神器numpy教程(二)

简介: 软件测试|Python科学计算神器numpy教程(二)

前言

上一篇文章我们介绍了numpy的安装和ndarray的部分知识,本篇文章我们来介绍一下numpy的数组的常用属性以及创建数组相关内容。

数组常用属性

  1. ndarray.shape

shape 属性的返回值一个由数组维度构成的元组,比如 2 行 3 列的二维数组可以表示为(2,3),该属性可以用来调整数组维度的大小,示例如下:

import numpy as np
a = np.array([[2,4,6],[3,5,7]])
print(a.shape)

-------------------
输出结果如下:
(2, 3)

当然我们也可以通过shape属性修改数组的形状大小:

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print(a)

----------------
输出结果如下:

[[1 2]
 [3 4]
 [5 6]]
  1. ndarray.reshape()

reshape() 函数可以调整数组形状,示例如下:

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print(b)

--------------------
输出结果如下:
[[1 2]
 [3 4]
 [5 6]]
  1. ndarray.ndim

上一篇文章已经介绍了,这个方法返回的是数组的维数,示例如下:

import numpy as np
#随机生成一个一维数组
c = np.arange(24)
print(c)
print(c.ndim)
#对数组进行变维操作
e = c.reshape(2,4,3)
print(e)
print(e.ndim)

------------------------
输出结果如下:
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
1
[[[ 0  1  2]
  [ 3  4  5]
  [ 6  7  8]
  [ 9 10 11]]

 [[12 13 14]
  [15 16 17]
  [18 19 20]
  [21 22 23]]]
3
  1. ndarray.itemsize

返回数组中每个元素的大小(以字节为单位),示例如下:

#数据类型为int8,代表1字节
import numpy as np
x = np.array([1,2,3,4,5], dtype = np.int8)
print (x.itemsize)

---------------------
输出结果如下:
1
#数据类型为int64,代表8字节

import numpy as np
x = np.array([1,2,3,4,5], dtype = np.int64)
print (x.itemsize)

-------------------------
输出结果如下:
8
  1. ndarray.flags

返回 ndarray 数组的内存信息,比如 ndarray 数组的存储方式,以及是否是其他数组的副本等,示例如下:

import numpy as np
x = np.array([1,2,3,4,5])
print (x.flags)

------------------
输出结果如下:
 C_CONTIGUOUS : True
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False

创建数组

之前我们介绍了使用array()方法创建数组,现在我们介绍其他几个创建数组的方法。

  1. numpy.empty()

numpy.empty() 创建未初始化的数组,可以指定创建数组的形状(shape)和数据类型(dtype),语法格式如下:

numpy.empty(shape, dtype = float, order = 'C')

参数说明:

  • shape:指定数组的形状
  • dtype:数组元素的数据类型,默认值是值 float
  • order:指数组元素在计算机内存中的储存顺序,默认顺序是“C”(行优先顺序)

示例如下:

import numpy as np
arr = np.empty((4,2), dtype = int)
print(arr)

--------------------------
输出结果如下:
[[  385967105 -2113830144]
 [ 2080601089 -2097118463]
 [  687887105    17654018]
 [  537526272  1344282656]]

注:numpy.empty()创建的数组并不是空数组,而是带有随机值的数组,这些值没有任何意义

  1. numpy.zeros()

numpy.zeros()创建元素均为 0 的数组,同时还可以指定被数组的形状,语法格式如下:

numpy. zeros(shape,dtype=float,order="C")

参数说明:

  • shape:指定数组的形状大小
  • dtype:可选项,数组的数据类型
  • order:“C”代表以行顺序存储,“F”则表示以列顺序存储

示例如下:

import numpy as np
#默认数据类型为浮点数
a=np.zeros(6)
print(a)

-------------------
输出结果如下:
[0. 0. 0. 0. 0. 0.]
  1. numpy.ones()

numpy.ones()指定形状大小与数据类型的新数组,并且新数组中每项元素均用 1 填充,语法格式如下:

numpy.ones(shape, dtype = None, order = 'C')
import numpy as np
arr1 = np.ones((3,2), dtype = int)
print(arr1)

-----------------
输出结果如下:
[[1 1]
 [1 1]
 [1 1]]
  1. numpy.asarray()

asarray() 与 array() 类似,但是它比 array() 更为简单。asarray() 能够将一个 Python 序列转化为 ndarray 对象,语法格式如下:

numpy.asarray(sequence,dtype = None ,order = None )

参数说明:

  • sequence:接受一个 Python 序列,可以是列表或者元组
  • dtype:可选参数,数组的数据类型
  • order:数组内存布局样式,可以设置为 C 或者 F,默认是 C

示例如下:

# 列表转化为 numpy 数组

import numpy as np
l=[1,2,3,4,5,6,7]
a = np.asarray(l);
print(type(a))
print(a) 
--------------------
输出结果如下:
<class 'numpy.ndarray'>
[1 2 3 4 5 6 7]


# 使用元组创建 numpy 数组

import numpy as np 
t=(1,2,3,4,5,6,7)    
a = np.asarray(t); 
print(type(a)) 
print(a)  

----------------
输出结果如下:
<class 'numpy.ndarray'>
[1 2 3 4 5 6 7]


# 使用嵌套列表创建多维数组

import numpy as np
l=[[1,2,3,4,5,6,7],[8,9]]
a = np.asarray(l, dtype=object);
print(type(a))
print(a)

------------------
输出结果如下:
<class 'numpy.ndarray'>
[list([1, 2, 3, 4, 5, 6, 7]) list([8, 9])]
  1. numpy.frombuffer()

使用指定的缓冲区创建数组,语法如下:

numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)

参数说明:

  • buffer:将任意对象转换为流的形式读入缓冲区
  • dtype:返回数组的数据类型,默认是 float32
  • count:要读取的数据数量,默认为 -1 表示读取所有数据
  • offset:读取数据的起始位置,默认为 0

示例如下:

import numpy as np
#字节串类型
l = b'hello world'
print(type(l))
a = np.frombuffer(l, dtype = "S1")
print(a)
print(type(a))

---------------------
输出结果如下:
<class 'bytes'>
[b'h' b'e' b'l' b'l' b'o' b' ' b'w' b'o' b'r' b'l' b'd']
<class 'numpy.ndarray'>
  1. numpy.fromiter()

把迭代对象转换为 ndarray 数组,其返回值是一个一维数组,语法如下:

numpy.fromiter(iterable, dtype, count = -1)

参数说明:

  • iterable:可迭代对象
  • dtype:返回数组的数据类型
  • count:读取的数据数量,默认为 -1,读取所有数据

示例:

import numpy as np
# 使用 range 函数创建列表对象
list=range(7)
#生成可迭代对象i
i=iter(list)
#使用i迭代器,通过fromiter方法创建ndarray
array=np.fromiter(i, dtype=float)
print(array)

----------------------
输出结果如下:
[0. 1. 2. 3. 4. 5. 6.]

总结

本文主要介绍array的内置属性以及创建array的不同方法,我们需要尤其注意使用numpy.empty()创建数组时,创建的数组并不是一个空的数组,我们使用空方法,但生成的不是空数组。

相关文章
|
7天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
38 8
|
7天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
26 7
|
7天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
27 4
|
7天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
24 5
|
1月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
28 1
|
3天前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
29 11
|
1月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
60 3
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
74 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
3月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
262 7
Jmeter实现WebSocket协议的接口测试方法
|
3月前
|
JSON 移动开发 监控
快速上手|HTTP 接口功能自动化测试
HTTP接口功能测试对于确保Web应用和H5应用的数据正确性至关重要。这类测试主要针对后台HTTP接口,通过构造不同参数输入值并获取JSON格式的输出结果来进行验证。HTTP协议基于TCP连接,包括请求与响应模式。请求由请求行、消息报头和请求正文组成,响应则包含状态行、消息报头及响应正文。常用的请求方法有GET、POST等,而响应状态码如2xx代表成功。测试过程使用Python语言和pycurl模块调用接口,并通过断言机制比对实际与预期结果,确保功能正确性。
272 3
快速上手|HTTP 接口功能自动化测试
下一篇
DataWorks