软件测试|Python科学计算神器numpy教程(二)

简介: 软件测试|Python科学计算神器numpy教程(二)

前言

上一篇文章我们介绍了numpy的安装和ndarray的部分知识,本篇文章我们来介绍一下numpy的数组的常用属性以及创建数组相关内容。

数组常用属性

  1. ndarray.shape

shape 属性的返回值一个由数组维度构成的元组,比如 2 行 3 列的二维数组可以表示为(2,3),该属性可以用来调整数组维度的大小,示例如下:

import numpy as np
a = np.array([[2,4,6],[3,5,7]])
print(a.shape)

-------------------
输出结果如下:
(2, 3)

当然我们也可以通过shape属性修改数组的形状大小:

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print(a)

----------------
输出结果如下:

[[1 2]
 [3 4]
 [5 6]]
  1. ndarray.reshape()

reshape() 函数可以调整数组形状,示例如下:

import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print(b)

--------------------
输出结果如下:
[[1 2]
 [3 4]
 [5 6]]
  1. ndarray.ndim

上一篇文章已经介绍了,这个方法返回的是数组的维数,示例如下:

import numpy as np
#随机生成一个一维数组
c = np.arange(24)
print(c)
print(c.ndim)
#对数组进行变维操作
e = c.reshape(2,4,3)
print(e)
print(e.ndim)

------------------------
输出结果如下:
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
1
[[[ 0  1  2]
  [ 3  4  5]
  [ 6  7  8]
  [ 9 10 11]]

 [[12 13 14]
  [15 16 17]
  [18 19 20]
  [21 22 23]]]
3
  1. ndarray.itemsize

返回数组中每个元素的大小(以字节为单位),示例如下:

#数据类型为int8,代表1字节
import numpy as np
x = np.array([1,2,3,4,5], dtype = np.int8)
print (x.itemsize)

---------------------
输出结果如下:
1
#数据类型为int64,代表8字节

import numpy as np
x = np.array([1,2,3,4,5], dtype = np.int64)
print (x.itemsize)

-------------------------
输出结果如下:
8
  1. ndarray.flags

返回 ndarray 数组的内存信息,比如 ndarray 数组的存储方式,以及是否是其他数组的副本等,示例如下:

import numpy as np
x = np.array([1,2,3,4,5])
print (x.flags)

------------------
输出结果如下:
 C_CONTIGUOUS : True
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False

创建数组

之前我们介绍了使用array()方法创建数组,现在我们介绍其他几个创建数组的方法。

  1. numpy.empty()

numpy.empty() 创建未初始化的数组,可以指定创建数组的形状(shape)和数据类型(dtype),语法格式如下:

numpy.empty(shape, dtype = float, order = 'C')

参数说明:

  • shape:指定数组的形状
  • dtype:数组元素的数据类型,默认值是值 float
  • order:指数组元素在计算机内存中的储存顺序,默认顺序是“C”(行优先顺序)

示例如下:

import numpy as np
arr = np.empty((4,2), dtype = int)
print(arr)

--------------------------
输出结果如下:
[[  385967105 -2113830144]
 [ 2080601089 -2097118463]
 [  687887105    17654018]
 [  537526272  1344282656]]

注:numpy.empty()创建的数组并不是空数组,而是带有随机值的数组,这些值没有任何意义

  1. numpy.zeros()

numpy.zeros()创建元素均为 0 的数组,同时还可以指定被数组的形状,语法格式如下:

numpy. zeros(shape,dtype=float,order="C")

参数说明:

  • shape:指定数组的形状大小
  • dtype:可选项,数组的数据类型
  • order:“C”代表以行顺序存储,“F”则表示以列顺序存储

示例如下:

import numpy as np
#默认数据类型为浮点数
a=np.zeros(6)
print(a)

-------------------
输出结果如下:
[0. 0. 0. 0. 0. 0.]
  1. numpy.ones()

numpy.ones()指定形状大小与数据类型的新数组,并且新数组中每项元素均用 1 填充,语法格式如下:

numpy.ones(shape, dtype = None, order = 'C')
import numpy as np
arr1 = np.ones((3,2), dtype = int)
print(arr1)

-----------------
输出结果如下:
[[1 1]
 [1 1]
 [1 1]]
  1. numpy.asarray()

asarray() 与 array() 类似,但是它比 array() 更为简单。asarray() 能够将一个 Python 序列转化为 ndarray 对象,语法格式如下:

numpy.asarray(sequence,dtype = None ,order = None )

参数说明:

  • sequence:接受一个 Python 序列,可以是列表或者元组
  • dtype:可选参数,数组的数据类型
  • order:数组内存布局样式,可以设置为 C 或者 F,默认是 C

示例如下:

# 列表转化为 numpy 数组

import numpy as np
l=[1,2,3,4,5,6,7]
a = np.asarray(l);
print(type(a))
print(a) 
--------------------
输出结果如下:
<class 'numpy.ndarray'>
[1 2 3 4 5 6 7]


# 使用元组创建 numpy 数组

import numpy as np 
t=(1,2,3,4,5,6,7)    
a = np.asarray(t); 
print(type(a)) 
print(a)  

----------------
输出结果如下:
<class 'numpy.ndarray'>
[1 2 3 4 5 6 7]


# 使用嵌套列表创建多维数组

import numpy as np
l=[[1,2,3,4,5,6,7],[8,9]]
a = np.asarray(l, dtype=object);
print(type(a))
print(a)

------------------
输出结果如下:
<class 'numpy.ndarray'>
[list([1, 2, 3, 4, 5, 6, 7]) list([8, 9])]
  1. numpy.frombuffer()

使用指定的缓冲区创建数组,语法如下:

numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)

参数说明:

  • buffer:将任意对象转换为流的形式读入缓冲区
  • dtype:返回数组的数据类型,默认是 float32
  • count:要读取的数据数量,默认为 -1 表示读取所有数据
  • offset:读取数据的起始位置,默认为 0

示例如下:

import numpy as np
#字节串类型
l = b'hello world'
print(type(l))
a = np.frombuffer(l, dtype = "S1")
print(a)
print(type(a))

---------------------
输出结果如下:
<class 'bytes'>
[b'h' b'e' b'l' b'l' b'o' b' ' b'w' b'o' b'r' b'l' b'd']
<class 'numpy.ndarray'>
  1. numpy.fromiter()

把迭代对象转换为 ndarray 数组,其返回值是一个一维数组,语法如下:

numpy.fromiter(iterable, dtype, count = -1)

参数说明:

  • iterable:可迭代对象
  • dtype:返回数组的数据类型
  • count:读取的数据数量,默认为 -1,读取所有数据

示例:

import numpy as np
# 使用 range 函数创建列表对象
list=range(7)
#生成可迭代对象i
i=iter(list)
#使用i迭代器,通过fromiter方法创建ndarray
array=np.fromiter(i, dtype=float)
print(array)

----------------------
输出结果如下:
[0. 1. 2. 3. 4. 5. 6.]

总结

本文主要介绍array的内置属性以及创建array的不同方法,我们需要尤其注意使用numpy.empty()创建数组时,创建的数组并不是一个空的数组,我们使用空方法,但生成的不是空数组。

相关文章
|
4月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
464 1
|
4月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
283 0
|
5月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
879 19
|
4月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
222 1
|
6月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
598 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
5月前
|
数据采集 存储 JSON
使用Python获取1688商品详情的教程
本教程介绍如何使用Python爬取1688商品详情信息,涵盖环境配置、代码编写、数据处理及合法合规注意事项,助你快速掌握商品数据抓取与保存技巧。
|
6月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
549 0
|
6月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
420 0
|
6月前
|
数据采集 索引 Python
Python Slice函数使用教程 - 详解与示例 | Python切片操作指南
Python中的`slice()`函数用于创建切片对象,以便对序列(如列表、字符串、元组)进行高效切片操作。它支持指定起始索引、结束索引和步长,提升代码可读性和灵活性。
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
385 1

热门文章

最新文章

推荐镜像

更多