负载均衡算法

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 负载均衡算法记录

随机

调用关系如上图(简化了公网->防火墙处理),适合场景:所有服务器性能基本一致,且无超阈值流量。

private K doSelect(List<K> nodes, String ip) {
    // 在列表中随机选取一个节点
    int index = random.nextInt(nodes.size());
    return nodes.get(index);
}

如果存在部分机器性能更优,此时可以在随机基础上增加权重,升级为:随机权重算法。

private K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    AtomicInteger totalWeight = new AtomicInteger(0);
    for (K node : nodes) {
        Integer weight = node.getWeight();
        totalWeight.getAndAdd(weight);
    }
    if (totalWeight.get() > 0) {
        int offset = random.nextInt(totalWeight.get());
        for (N node : nodes) {
            // 让随机值 offset 减去当前node权重值
            offset -= node.getWeight();
            if (offset < 0) {
                // 当前node大于随机值offset,返回此Node
                return node;
            }
        }
    }
    // 随机返回
    return nodes.get(random.nextInt(length));
}

轮询

轮询不再是在多台服务器随机挑选,而是按照顺序一个个排队调用,调用完再插入队尾等待下一次调用

protected K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    // 如果位置值已经等于长度重置为0(走一轮了)
    position.compareAndSet(length, 0);
    N node = nodes.get(position.get());
    // 数据原子增加,对应调用从1->2->3->4
    position.getAndIncrement();
    return node;
}

同加权随机,轮询也同样存在加权轮询的场景,此时流量调度将发生如下变化:

此处逻辑相对复杂,笔者在此说出主要思路,后续有时间补充伪代码,感兴趣的可以参照Dubbo的实现

如上有服务器servers=[A,B],对应权重weights=[3,1],总权重为4。我们可以理解为有4台服务器,3台A,1台B,一次调用过来的时候,需要按顺序访问。如有5次调用,调用顺序为AAABA。

选举思路如下:

次数

WeightedRoundRobin

选择结果

选择后的WeightedRoundRobin

1

3、1

A

2、1

2

2、1

A

1、1

3

1、1

A

0、1

4

0、1

B

0、0(等于0-0时复原成:3、1)

5

3、1

A

2、1

最小活跃数

指:将当前请求转发到连接数/请求数最少的机器上,其特点是根据服务器实时运行状态动态分配,保障服务负载不会过饱和。如下图当请求4过来时,Nginx判断目前服务器1连接数>服务器2,故4会请求到服务器2上:

源地址哈希

根据请求源IP哈希计算得到一个数值,用该数值在候选服务器列表的进行取模运算,得到的结果便是选中的服务器,此操作可以保证固定IP的请求总是到某一台服务器上,伪代码如下:

private K doSelect(List<K> nodes, String ip) {
    int length = nodes.size();
    int index = hash(ip) % length;
    return nodes.get(index);
}

一致性哈希

相同的请求尽可能落到同一个服务器上。一致性哈希解决稳定性问题,可以将所有的存储节点排列在首尾相接的 Hash 环上,每个 key 在计算 Hash 后会 顺时针找到临接的存储节点存放。而当有节点加入或退出时,仅影响该节点在 Hash环上顺时针相邻的后续节点。

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
相关文章
|
1月前
|
存储 负载均衡 算法
负载均衡算法
负载均衡算法
30 1
|
7月前
|
负载均衡 算法 调度
负载均衡原理及算法
负载均衡原理及算法
70 1
|
7月前
|
负载均衡 算法
负载均衡的原理
负载均衡的原理
|
负载均衡 Cloud Native 网络协议
负载均衡原理及应用
负载均衡原理及应用
187 0
|
缓存 负载均衡 网络协议
负载均衡是什么?
负载均衡知识介绍
326 1
|
域名解析 缓存 负载均衡
简单聊聊负载均衡的那些事
负载均衡(Load balance,LB),是一种计算机技术,用来在多个计算机(计算机集群)、网络连接、CPU、磁盘驱动器或其他资源中分配负载,以达到最优化资源使用、最大化吞吐率、最小化响应时间、同时避免过载的目的。
260 1
简单聊聊负载均衡的那些事
|
缓存 负载均衡 算法
一致性Hash在负载均衡中的应用
一致性Hash是一种特殊的Hash算法,由于其均衡性、持久性的映射特点,被广泛的应用于负载均衡领域,如nginx和memcached都采用了一致性Hash来作为集群负载均衡的方案。本文将介绍一致性Hash的基本思路,并讨论其在分布式缓存集群负载均衡中的应用。同时也会进行相应的代码测试来验证其算法特性,并给出和其他负载均衡方案的一些对比。
一致性Hash在负载均衡中的应用
|
负载均衡 算法 Serverless
负载均衡算法
负载均衡算法
208 1
|
负载均衡 算法
彻底揭秘负载均衡算法与实现!深入剖析负载均衡核心(中)
彻底揭秘负载均衡算法与实现!深入剖析负载均衡核心
151 0
彻底揭秘负载均衡算法与实现!深入剖析负载均衡核心(中)
|
tengine 负载均衡 算法
彻底揭秘负载均衡算法与实现!深入剖析负载均衡核心(上)
彻底揭秘负载均衡算法与实现!深入剖析负载均衡核心
165 0