基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)

简介: 基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)

💥1 概述

摘要: 为了调高风光互补发电储能系统的经济性,减少其运行费用,研究风光互补发电储能系统的容量优化配置模型,探讨粒子群算法的改进及混合储能容量优化方法。首先通过对全生命周期费用静态模型的介绍,利用蓄电池和超级电容器作为风光互补系统混合储能装置,以其全生命周期费用最小为目标,以系统的缺电率等运行指标为约束条件,建立了一种混合储能系统容量优化配置模型,其次,通过优化不对称加速因子进而改进了粒子群算法,最后利用算例在 Matlab 中进行了仿真与求解,结果表明,该方法不仅优化了蓄电池的工作状态,降低了储能系统的全生命周期费用,而且加快了收敛速度。


关键词: 风光互补发电系统; 超级电容器; 混合储能; 粒子群算法; 加速因子


由于其优良的节能减排价值,风力发电和光伏发电近年来发展迅速,在风、光资源等较为充足的地


区,设立了一些风光互补发电系统[1 - 3]。但是由于风、光存在不稳定性和间歇性等特点,需要在风光互补发电系统中配置储能系统来平抑功率的波动。常用的储能装置包括电容器和蓄电池,蓄电池的能量比高,方便长时间存储电能,能增加整个发电系统的能量调节范围,但蓄电池的功率密度低、循环寿命短、有一定的环境污染,并且风、光的不稳定和间歇性等问题会加大系统中储能部分的费用; 超级电容器功率密度大、充放电速度快、循环寿命长,有助于抑制系统的短时功率波动。为优化蓄电池充放电状态,显著减少蓄电池充电和放电次数,延长其使用寿命,可将蓄电池和超级电容器混合做为储能装置,实现互补,称之为混合储能系统[4 - 6]。为了进一步提高


储能系统的经济性,国内外很多学者开展了储能系统容量配置的大量研究,但是大部分只是考虑了储能器件的初次购置费用,而未考虑储能装置使用过程中的安装、维护以及废弃等方面所需费用,即全生命周期费用[7 - 10]。因此,以储能装置的全生命周期费用为优化目标,通过算法改进,合理配置蓄电池和超级电容器的个数,优化容量配置,成为风光互补发电混合储能系统的研究方向之一,特别是以全生命周期费用最小为目标,建立风光互补混合储能系统容量优化配置模型和算法研究。

📚2 运行结果

原文结果:

复现结果图:

部分代码:


%% funm
function y=funm(pop)
Ew=[277.6  238.5  243.4  240.4  238.5  222.2  208.8  205.8  205.7  236.3  265.4  310.7];%风电每个月发出的电量
Es=[31.3  37.8  54.8  60.63  69.93  67.07  65.03  62.02  59.92  43.6  31.47  26.74];%太阳能每个月发出的电量
El=[294.5  266  285  273  294.5  283  295  281  282  294  285  299];%负荷每个月发出的电量
yitac=0.95;%逆变器功率转换效率
delE=(Ew+Es)*yitac-El;%功率缺额(发电量-负荷): ΔE = (E w (k) + E s (k))η c - E L (k)
Eb=zeros(1,12);
Ec=zeros(1,12);
Elps=0;%缺电量
for k=1:12
    if delE(k)>0 %发电发得多
        if k == 1
           [Ebt,Ect]=pro1(delE(k),pop,0,0);%pro1
        else
            [Ebt,Ect]=pro1(delE(k),pop,Eb(k-1),Ec(k-1));
        end
        Eb(k)=Ebt;
        Ec(k)=Ect;
    else
        delE(k)=-1*delE(k);
        if k == 1
            [Ebt,Ect,Elps]=pro2(delE(k),pop,Elps,0,0);%pro2
        else
            [Ebt,Ect,Elps]=pro2(delE(k),pop,Elps,Eb(k-1),Ec(k-1));
        end
        Eb(k)=Ebt;
        Ec(k)=Ect;
    end
end
y=0.288*pop(1)+0.0257*pop(2);
if 0.000384*pop(1) + 3.165*(10^(-5))*pop(2) < max(El)*0.65
    y=y+inf;
end
for k=1:12
  if Eb(k) > 0.7 * delE(k)
      y=y+inf;
  end
end
LPSP=Elps/sum(El);
if LPSP > 0.05
    y=y+inf;
end
LPSP


🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]杨国华,朱向芬,马玉娟,韩世军,王金梅,王鹏珍.基于改进粒子群算法的混合储能系统容量优化[J].电测与仪表,2015,52(23):1-5+10.


🌈4 Matlab代码及文章讲解

相关文章
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。