借助模糊逻辑将文化算法与和谐搜索相结合进行学习——文化和谐学习算法(Matlab代码实现)

简介: 借助模糊逻辑将文化算法与和谐搜索相结合进行学习——文化和谐学习算法(Matlab代码实现)

💥1 概述

文化和谐学习算法 - 创建于 18 Jan 2022 由 赛义德·穆罕默德·侯赛因·穆萨维


这里都是关于使用进化算法学习的。和谐搜索和文化算法是两种快速优化算法,它们的结果在这里组合在一起,以便在一个简单的中训练目标的输入数据集。基本上,系统从制作初始模糊模型和拟合开始基于输入的输出首先通过和谐搜索,然后尝试拟合和谐搜索输出与第二阶段的输入通过文化算法。这意味着我们正在同时使用两者,进化算法,以提高准确性。系统很容易,用于回归、分类和其他优化任务。您可以使用您的数据并使用参数。


📚2 运行结果

部分代码:

%% Cleaning
clc;
clear;
warning('off');
%% Data Loading
data=JustLoad();
%% Generate Basic Fuzzy Model
% Number of Clusters in FCM
ClusNum=4; 
%
fis=GenerateFuzzy(data,ClusNum);
%
%% Tarining Cultural Harmony Algorithm
% Harmony Search Learning
HarFis=hars(fis,data);        
% Harmony Cultural Algorithm Learning
CAHSfis=CulturalFCN(HarFis,data);        
%% Plot Cultural Harmony Results (Train - Test)
% Train Output Extraction
TrTar=data.TrainTargets;
TrainOutputs=evalfis(data.TrainInputs,CAHSfis);
% Test Output Extraction
TsTar=data.TestTargets;
TestOutputs=evalfis(data.TestInputs,CAHSfis);
% Train calc
Errors=data.TrainTargets-TrainOutputs;
MSE=mean(Errors.^2);RMSE=sqrt(MSE);  
error_mean=mean(Errors);error_std=std(Errors);
% Test calc
Errors1=data.TestTargets-TestOutputs;
MSE1=mean(Errors1.^2);RMSE1=sqrt(MSE1);  
error_mean1=mean(Errors1);error_std1=std(Errors1);
% Train
figure('units','normalized','outerposition',[0 0 1 1])
subplot(3,2,1);
plot(data.TrainTargets,'c');
hold on;
plot(TrainOutputs,'k');legend('Target','Output');
title('Cultural Harmony Training Part');xlabel('Sample Index');grid on;
% Test
subplot(3,2,2);
plot(data.TestTargets,'c');
hold on;
plot(TestOutputs,'k');legend('Cultural Harmony Target','Cultural Harmony Output');
title('Cultural Harmony Testing Part');xlabel('Sample Index');grid on;
% Train
subplot(3,2,3);
plot(Errors,'k');legend('Cultural Harmony Training Error');
title(['Train MSE =     ' num2str(MSE) '  ,     Train RMSE =     ' num2str(RMSE)]);grid on;
% Test
subplot(3,2,4);
plot(Errors1,'k');legend('Cultural Harmony Testing Error');
title(['Test MSE =     ' num2str(MSE1) '  ,    Test RMSE =     ' num2str(RMSE1)]);grid on;
% Train
subplot(3,2,5);
h=histfit(Errors, 50);h(1).FaceColor = [.1 .2 0.9];
title(['Train Error Mean =   ' num2str(error_mean) '  ,   Train Error STD =   ' num2str(error_std)]);
% Test
subplot(3,2,6);
h=histfit(Errors1, 50);h(1).FaceColor = [.1 .2 0.9];
title(['Test Error Mean =   ' num2str(error_mean1) '  ,   Test Error STD =    ' num2str(error_std1)]);
%% Plot Just Fuzzy Results (Train - Test)
% Train Output Extraction
fTrainOutputs=evalfis(data.TrainInputs,fis);
% Test Output Extraction
fTestOutputs=evalfis(data.TestInputs,fis);
% Train calc
fErrors=data.TrainTargets-fTrainOutputs;
fMSE=mean(fErrors.^2);fRMSE=sqrt(fMSE);  
ferror_mean=mean(fErrors);ferror_std=std(fErrors);
% Test calc
fErrors1=data.TestTargets-fTestOutputs;
fMSE1=mean(fErrors1.^2);fRMSE1=sqrt(fMSE1);  
ferror_mean1=mean(fErrors1);ferror_std1=std(fErrors1);
% Train
figure('units','normalized','outerposition',[0 0 1 1])
subplot(3,2,1);
plot(data.TrainTargets,'m');hold on;
plot(fTrainOutputs,'k');legend('Target','Output');
title('Fuzzy Training Part');xlabel('Sample Index');grid on;
% Test
subplot(3,2,2);
plot(data.TestTargets,'m');hold on;
plot(fTestOutputs,'k');legend('Target','Output');
title('Fuzzy Testing Part');xlabel('Sample Index');grid on;
% Train
subplot(3,2,3);
plot(fErrors,'g');legend('Fuzzy Training Error');
title(['Train MSE =     ' num2str(fMSE) '   ,    Test RMSE =     ' num2str(fRMSE)]);grid on;
% Test
subplot(3,2,4);
plot(fErrors1,'g');legend('Fuzzy Testing Error');
title(['Train MSE =     ' num2str(fMSE1) '   ,    Test RMSE =     ' num2str(fRMSE1)]);grid on;
% Train
subplot(3,2,5);
h=histfit(fErrors, 50);h(1).FaceColor = [.3 .8 0.3];
title(['Train Error Mean =    ' num2str(ferror_mean) '   ,   Train Error STD =    ' num2str(ferror_std)]);
% Test
subplot(3,2,6);
h=histfit(fErrors1, 50);h(1).FaceColor = [.3 .8 0.3];
title(['Test Error Mean =    ' num2str(ferror_mean1) '   ,   Test Error STD =    ' num2str(ferror_std1)]);

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Seyed Muhammad Hossein Mousavi (2022). Cultural Harmony Learning Algorithm


相关文章
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
2天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
3天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
1天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法matlab仿真
本项目基于贝叶斯优化的自适应马尔科夫链蒙特卡洛(Adaptive-MCMC)算法,实现MATLAB仿真,并对比Kawasaki sampler、IMExpert、IMUnif和IMBayesOpt四种方法。核心在于利用历史采样信息动态调整MCMC参数,以高效探索复杂概率分布。完整程序在MATLAB2022A上运行,展示T1-T7结果,无水印。该算法结合贝叶斯优化与MCMC技术,通过代理模型和采集函数优化采样效率。
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
284 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
169 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
144 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
10月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章