借助模糊逻辑将文化算法与和谐搜索相结合进行学习——文化和谐学习算法(Matlab代码实现)

简介: 借助模糊逻辑将文化算法与和谐搜索相结合进行学习——文化和谐学习算法(Matlab代码实现)

💥1 概述

文化和谐学习算法 - 创建于 18 Jan 2022 由 赛义德·穆罕默德·侯赛因·穆萨维


这里都是关于使用进化算法学习的。和谐搜索和文化算法是两种快速优化算法,它们的结果在这里组合在一起,以便在一个简单的中训练目标的输入数据集。基本上,系统从制作初始模糊模型和拟合开始基于输入的输出首先通过和谐搜索,然后尝试拟合和谐搜索输出与第二阶段的输入通过文化算法。这意味着我们正在同时使用两者,进化算法,以提高准确性。系统很容易,用于回归、分类和其他优化任务。您可以使用您的数据并使用参数。


📚2 运行结果

部分代码:

%% Cleaning
clc;
clear;
warning('off');
%% Data Loading
data=JustLoad();
%% Generate Basic Fuzzy Model
% Number of Clusters in FCM
ClusNum=4; 
%
fis=GenerateFuzzy(data,ClusNum);
%
%% Tarining Cultural Harmony Algorithm
% Harmony Search Learning
HarFis=hars(fis,data);        
% Harmony Cultural Algorithm Learning
CAHSfis=CulturalFCN(HarFis,data);        
%% Plot Cultural Harmony Results (Train - Test)
% Train Output Extraction
TrTar=data.TrainTargets;
TrainOutputs=evalfis(data.TrainInputs,CAHSfis);
% Test Output Extraction
TsTar=data.TestTargets;
TestOutputs=evalfis(data.TestInputs,CAHSfis);
% Train calc
Errors=data.TrainTargets-TrainOutputs;
MSE=mean(Errors.^2);RMSE=sqrt(MSE);  
error_mean=mean(Errors);error_std=std(Errors);
% Test calc
Errors1=data.TestTargets-TestOutputs;
MSE1=mean(Errors1.^2);RMSE1=sqrt(MSE1);  
error_mean1=mean(Errors1);error_std1=std(Errors1);
% Train
figure('units','normalized','outerposition',[0 0 1 1])
subplot(3,2,1);
plot(data.TrainTargets,'c');
hold on;
plot(TrainOutputs,'k');legend('Target','Output');
title('Cultural Harmony Training Part');xlabel('Sample Index');grid on;
% Test
subplot(3,2,2);
plot(data.TestTargets,'c');
hold on;
plot(TestOutputs,'k');legend('Cultural Harmony Target','Cultural Harmony Output');
title('Cultural Harmony Testing Part');xlabel('Sample Index');grid on;
% Train
subplot(3,2,3);
plot(Errors,'k');legend('Cultural Harmony Training Error');
title(['Train MSE =     ' num2str(MSE) '  ,     Train RMSE =     ' num2str(RMSE)]);grid on;
% Test
subplot(3,2,4);
plot(Errors1,'k');legend('Cultural Harmony Testing Error');
title(['Test MSE =     ' num2str(MSE1) '  ,    Test RMSE =     ' num2str(RMSE1)]);grid on;
% Train
subplot(3,2,5);
h=histfit(Errors, 50);h(1).FaceColor = [.1 .2 0.9];
title(['Train Error Mean =   ' num2str(error_mean) '  ,   Train Error STD =   ' num2str(error_std)]);
% Test
subplot(3,2,6);
h=histfit(Errors1, 50);h(1).FaceColor = [.1 .2 0.9];
title(['Test Error Mean =   ' num2str(error_mean1) '  ,   Test Error STD =    ' num2str(error_std1)]);
%% Plot Just Fuzzy Results (Train - Test)
% Train Output Extraction
fTrainOutputs=evalfis(data.TrainInputs,fis);
% Test Output Extraction
fTestOutputs=evalfis(data.TestInputs,fis);
% Train calc
fErrors=data.TrainTargets-fTrainOutputs;
fMSE=mean(fErrors.^2);fRMSE=sqrt(fMSE);  
ferror_mean=mean(fErrors);ferror_std=std(fErrors);
% Test calc
fErrors1=data.TestTargets-fTestOutputs;
fMSE1=mean(fErrors1.^2);fRMSE1=sqrt(fMSE1);  
ferror_mean1=mean(fErrors1);ferror_std1=std(fErrors1);
% Train
figure('units','normalized','outerposition',[0 0 1 1])
subplot(3,2,1);
plot(data.TrainTargets,'m');hold on;
plot(fTrainOutputs,'k');legend('Target','Output');
title('Fuzzy Training Part');xlabel('Sample Index');grid on;
% Test
subplot(3,2,2);
plot(data.TestTargets,'m');hold on;
plot(fTestOutputs,'k');legend('Target','Output');
title('Fuzzy Testing Part');xlabel('Sample Index');grid on;
% Train
subplot(3,2,3);
plot(fErrors,'g');legend('Fuzzy Training Error');
title(['Train MSE =     ' num2str(fMSE) '   ,    Test RMSE =     ' num2str(fRMSE)]);grid on;
% Test
subplot(3,2,4);
plot(fErrors1,'g');legend('Fuzzy Testing Error');
title(['Train MSE =     ' num2str(fMSE1) '   ,    Test RMSE =     ' num2str(fRMSE1)]);grid on;
% Train
subplot(3,2,5);
h=histfit(fErrors, 50);h(1).FaceColor = [.3 .8 0.3];
title(['Train Error Mean =    ' num2str(ferror_mean) '   ,   Train Error STD =    ' num2str(ferror_std)]);
% Test
subplot(3,2,6);
h=histfit(fErrors1, 50);h(1).FaceColor = [.3 .8 0.3];
title(['Test Error Mean =    ' num2str(ferror_mean1) '   ,   Test Error STD =    ' num2str(ferror_std1)]);

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Seyed Muhammad Hossein Mousavi (2022). Cultural Harmony Learning Algorithm


相关文章
|
7天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
131 80
|
3天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
12天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
19天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
19天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
25天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
25天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
5天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。

热门文章

最新文章