综合能源系统分析的统一能路理论(三):《稳态与动态潮流计算》(Python代码实现)

简介: 综合能源系统分析的统一能路理论(三):《稳态与动态潮流计算》(Python代码实现)

💥1 概述

本文包含“综合能源系统分析的统一能路理论(三):潮流计算”中7节点天然气网络和6节点供热网络的数据与Python源码

注意


1. 第三方package要求:pandas、numpy、scipy、matplotlib


2. python版本要求:python 3.x


3. 给出的源码仅对目标算例负责。举例:7节点气网算例中的压气机扬程保持恒定,故未对其进行傅里叶分解;基值修正部分,标准的做法应对计算得到的流量取绝对值再修正(因为基值是非负的),由于算例中给出的正方向恰好为实际正方向,故源码中未取绝对值。如需扩充、修改算例内容,请自行修改代码。


4. 天然气网络的算例中,RT用声速(340m/s)的平方代替。这是一个常数,具体取值不影响算法本身。


📚2 运行结果

2.1 六节点热网动态潮流

2.2  六节点热网稳态潮流

2.3 七节点气网动态潮流

2.4 七节点气网稳态潮流

部分代码:

with context('读取数据与处理'):
    pipe_table = pd.read_excel('./7节点气网稳态data.xls', sheet_name='Branch')
    node_table = pd.read_excel('./7节点气网稳态data.xls', sheet_name='Node')
    numpipe = len(pipe_table)  # 支路数
    numnode = len(node_table)  # 节点数
    l = pipe_table['长度(km)'].values * 1e3  # 长度,m
    d = pipe_table['管径(mm)'].values / 1e3  # 管径,m
    lam = pipe_table['粗糙度'].values  # 摩擦系数
    cp = pipe_table['压气机(MPa)'].values * 1e6  # 支路增压,Pa
    c = 340  # 声速
    Apipe = np.pi*d**2/4  # 管道截面积
    v = np.ones(numpipe)*5  # 流速基值
with context('基于能路的潮流计算'):
    MaxIter = 100  # 最大迭代次数
    err = []  # 误差记录
    vb = [v.copy()]  # 基值记录
    for itera in range(MaxIter):
        # 支路参数
        Rg = [lam[i]*v[i]/Apipe[i]/d[i] for i in range(numpipe)]
        Lg = [1/Apipe[i] for i in range(numpipe)]
        Cg = [Apipe[i]/c**2 for i in range(numpipe)]
        Ug = [-lam[i]*v[i]**2/2/c**2/d[i] for i in range(numpipe)]
        # 支路导纳矩阵
        Yb1, Yb2, Zb, Ub = [], [], [], []
        f = 0  # 稳态,只取零频率分量
        for i in range(numpipe):
            Z, Y = Rg[i], 0
            za = np.cosh(np.sqrt(Ug[i]**2+4*Z*Y)/2*l[i]) - Ug[i]/np.sqrt(Ug[i]**2+4*Z*Y)*np.sinh(np.sqrt(Ug[i]**2+4*Z*Y)/2*l[i])
            za = za*np.exp(-Ug[i]*l[i]/2)
            zb = -2*Z/np.sqrt(Ug[i]**2+4*Z*Y)*np.sinh(np.sqrt(Ug[i]**2+4*Z*Y)/2*l[i])
            zb = zb*np.exp(-Ug[i]*l[i]/2)
            zc = -2*Y/np.sqrt(Ug[i]**2+4*Z*Y)*np.sinh(np.sqrt(Ug[i]**2+4*Z*Y)/2*l[i])
            zc = zc*np.exp(-Ug[i]*l[i]/2)
            zd = np.cosh(np.sqrt(Ug[i]**2+4*Z*Y)/2*l[i]) + Ug[i]/np.sqrt(Ug[i]**2+4*Z*Y)*np.sinh(np.sqrt(Ug[i]**2+4*Z*Y)/2*l[i])
            zd = zd*np.exp(-Ug[i]*l[i]/2)
            Yb1.append((za*zd-zb*zc-za)/zb)  # 稳态计算中,接地支路不起作用
            Yb2.append((1-zd)/zb)  # 稳态计算中,接地支路不起作用
            Zb.append(-zb)
            Ub.append(1-za*zd+zb*zc)
        yb, ub = np.diag(1/np.array(Zb)), np.diag(Ub)
        # 节点-支路关联矩阵
        A = np.zeros([numnode, numpipe])
        Ap = np.zeros([numnode, numpipe])
        for row in pipe_table.iterrows():
            A[int(row[1][1])-1, row[0]] = 1
            A[int(row[1][2])-1, row[0]] = -1
            Ap[int(row[1][1])-1, row[0]] = 1
            Ap[int(row[1][2])-1, row[0]] = 0
        # 节点导纳矩阵
        Yg_ = np.matmul(np.matmul(A, yb), A.T) - np.matmul(np.matmul(np.matmul(A, yb), ub), Ap.T)
        # 节点分类
        fix_G = node_table[node_table['节点类型']=='定注入'].index.values
        fix_p = node_table[node_table['节点类型']=='定压力'].index.values
        Yg_11 = Yg_[fix_G][:,fix_G]
        Yg_12 = Yg_[fix_G][:,fix_p]
        Yg_21 = Yg_[fix_p][:,fix_G]
        Yg_22 = Yg_[fix_p][:,fix_p]
        assert np.linalg.cond(Yg_11)<1e5  # 确认矩阵不奇异
        # 形成广义节点注入向量(给定) 与 节点压力向量(给定)
        Gn_1 = node_table[node_table['节点类型']=='定注入']['注入 (kg/s)'].values.reshape([-1,1])  # kg/s
        Gn_1 -= np.matmul(np.matmul(A[fix_G,:], yb), cp.reshape([-1,1]))
        pn2 = node_table[node_table['节点类型']=='定压力']['气压 (MPa)'].values.reshape([-1,1]) * 1e6  # Pa
        # 求解零频率网络方程
        pn1 = np.matmul(np.linalg.inv(Yg_11), (Gn_1 - np.matmul(Yg_12, pn2))).real
        Gn_2 = (np.matmul(Yg_21, pn1) + np.matmul(Yg_22, pn2))
        Gn_2 += np.matmul(np.matmul(A[fix_p,:], yb), cp.reshape([-1,1]))
        # 计算失配误差
        p = []
        pn1, pn2 = pn1.reshape(-1).tolist(), pn2.reshape(-1).tolist()
        for node in node_table['节点类型'].values:
            p.append(pn1.pop(0) if node=='定注入' else pn2.pop(0))
        p = np.array(p).reshape([-1,1])
        I = np.matmul(A.T, p).reshape(-1) + cp.reshape(-1) - (np.array(Ub).reshape([-1,1])*np.matmul(Ap.T, p)).reshape(-1)
        for i in range(numpipe):
            I[i] = abs(I[i]*np.diag(yb)[i]/Apipe[i]/(np.matmul(Ap.T, p).reshape(-1)[i])*c**2)
        err.append(np.linalg.norm(I-v))
        print('第%d次迭代,失配误差为%.5f'%(itera+1, err[-1]))

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Python代码、数据


相关文章
|
27天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
84 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
64 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
28天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
251 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
80 37
Python时间序列分析工具Aeon使用指南
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
75 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
|
1月前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
52 10

热门文章

最新文章

推荐镜像

更多